Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, nanostructured superhydrophobic polymeric surfaces were fabricated by a simple (one-step) reproductive method of anodic aluminum oxide (AAO) template extrusion. By tuning the diameter of the AAO template and the pressure to extrude, high-density polyethylene (HDPE) nanofiber surfaces with different nanometer roughness were prepared, and various sliding angles (SAs) of drops on these surfaces were measured. The results of the impact of drops on the nanostructured HDPE surfaces indicated that SAs were very important for the dynamic wettability of superhydrophobic surfaces. The one-step AAO template extrusion method has the advantage of tailoring the SA values on polymeric surfaces. Therefore, we believe it to be a promising industrial basis for manufacturing functional materials in the fields of agriculture, electronics, and optics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la9002077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!