Under consideration is the history and contemporary state of the vegetation classification based on the ecological-floristic criteria (the Braun-Blanquet approach) in Russia. Analyzed are preconditions of dissemination of this approach in the U.S.S.R. in the 1960s, active development of ecological-floristic classification in the 1980s, and most recent developments in the classification theory. The Braun-Blanquet approach became the principal method of vegetation classification in Russian phytocenology. Due to this, Russian syntaxonomists became associated into international community of the vegetation researchers, which allows them to participate actively in the projects on biodiversity conservation. The journal "Vegetation of Russia" much contributed to these developments. The authors respond to A.M. Ghilyarov's criticisms who considers the Braun-Blanquet approach as a "rudiment of the Natural History" useless for the contemporary ecology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vegetation classification
12
braun-blanquet approach
12
method vegetation
8
classification
5
[braun-blanquet method
4
vegetation
4
classification russia]
4
russia] consideration
4
consideration history
4
history contemporary
4

Similar Publications

The generation of spectral libraries using hyperspectral data allows for the capture of detailed spectral signatures, uncovering subtle variations in plant physiology, biochemistry, and growth stages, marking a significant advancement over traditional land cover classification methods. These spectral libraries enable improved forest classification accuracy and more precise differentiation of plant species and plant functional types (PFTs), thereby establishing hyperspectral sensing as a critical tool for PFT classification. This study aims to advance the classification and monitoring of PFTs in Shoolpaneshwar wildlife sanctuary, Gujarat, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and machine learning techniques.

View Article and Find Full Text PDF

This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

A Large-Scale Agricultural Land Classification Method Based on Synergistic Integration of Time Series Red-Edge Vegetation Index and Phenological Features.

Sensors (Basel)

January 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.

Agricultural land classification plays a pivotal role in food security and ecological sustainability, yet achieving accurate large-scale mapping remains challenging. This study presents methodological innovations through a multi-level feature enhancement framework that transcends traditional time series analysis. Using Shandong Province, northern China's agricultural heartland, as a case study, we first established a foundation with time series red-edge vegetation indices (REVI) from Sentinel-2 imagery, uniquely combining the normalized difference red edge index (NDRE) and plant senescence reflectance index (PSRI).

View Article and Find Full Text PDF

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!