The protective effect of vitamin E supplements has been questioned, possibly because they often contain only alpha-tocopherol, and recent studies indicate that gamma-tocopherol also has important properties. The aim of this study was to investigate whether the levels of DNA lesions in middle-aged, overweight males could be reduced by consumption of low doses of an antioxidant supplement for six weeks, designed to imitate a balanced diet. The participants (n=60) were randomly divided into: placebo, single-, and double-dose groups. Genotoxic and oxidative DNA lesions in mononuclear cells were measured with the Comet assay, before and after supplement administration. Furthermore, a cell study was performed to investigate if pre-incubation of a human lung cell line (A549) with alpha- and gamma-tocopherol (5 and 50 microM for 23 hours) could protect against induced oxidative DNA lesions as measured by the Comet assay. The level of oxidative DNA lesions in the double-dose group was significantly lower than in the control group. Oxidative DNA lesions correlated only to changes in serum gamma-tocopherol, and not alpha-tocopherol. In the cell study, only gamma-tocopherol protected cells against induced oxidative DNA lesions. We therefore hypothesize that gamma-tocopheol rather than alpha-tocopherol is involved in reducing oxidative DNA lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1024/0300-9831.78.45.183DOI Listing

Publication Analysis

Top Keywords

dna lesions
32
oxidative dna
28
dna
8
lesions
8
mononuclear cells
8
measured comet
8
comet assay
8
cell study
8
induced oxidative
8
oxidative
6

Similar Publications

Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.

View Article and Find Full Text PDF

Cytotoxicity and genotoxicity of orthodontic bands after aging: an in-vitro study.

BMC Oral Health

January 2025

Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-3119, Shiraz, Iran.

Background: This investigation sought to evaluate cytotoxic and genotoxic effects of two different types of orthodontic bands after aging in acidic and neutral artificial saliva using human gingival fibroblast-like (HGF1-PI 1) cell lines.

Methods: Two commercial brands of orthodontic molar bands (American orthodontic (AO) and 3 S-dental bands), commonly used by orthodontists, were tested. These bands were divided into four groups to examine the effects of aging following thermocycling, and pH variations (pH = 4.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.

View Article and Find Full Text PDF

Novel radiation sensitizers, including inhibitors targeting DNA damage response, have been developed to enhance the efficacy of anticancer treatments that induce DNA damage in cancer cells. Peposertib, a potent, selective, and orally administered inhibitor of DNA-dependent protein kinase, impedes the nonhomologous end-joining mechanism for DNA double-strand break (DSB) repair. We investigated radioimmunotherapy alone or with peposertib in preclinical models of renal cell carcinoma (RCC) or prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!