A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The anti-arrhythmic peptide AAP10 remodels Cx43 and Cx40 expression and function. | LitMetric

The anti-arrhythmic peptide AAP10 remodels Cx43 and Cx40 expression and function.

Naunyn Schmiedebergs Arch Pharmacol

Department of Biomedical and Biological Sciences, School of Life Sciences, Glasgow Caledonian University, Glasgow G4OBA, Scotland, UK.

Published: July 2009

The anti-arrhythmic peptide AAP10 has previously been shown to acutely upregulate electrical cell-to-cell coupling mediated via connexin 43 gap junctions. In the present work, we have further examined the connexin (Cx) specificity and mechanism of action of this peptide in HeLa cells expressing Cx43, Cx40 or Cx26. The ability of cells to transfer the small fluorescent dyes Alexa 488 (MW 570) or Alexa 594 (MW 759), as markers for metabolic coupling mediated via gap junctions, before and after exposure to AAP10 and/or the protein kinase C inhibitor chelerythrine for 5 h was determined by microinjection analysis. Immunofluorescence analysis assessed the effect of AAP10 on the spatial localisation of each Cx sub-type. Cell extracts were isolated for Western blot and reverse transcription polymerase chain reaction analysis at 0, 5, 10, 18 and 24 h following exposure to AAP10 and the relative Cx expression profiles determined. AAP10 enhanced the ability of Cx43 and, to a lesser extent, Cx40 to transfer Alexa 488. It also enhanced the ability of Cx43 to transfer Alexa 594 but not Cx40. Inhibition of protein kinase C blocked this enhanced response in both Cx sub-types. Western blot analysis determined that AAP10 induced Cx40 protein expression over periods of up to 24 h with an associated increase in the localisation of Cx40 at points of cell-to-cell contact following 24-h exposure. Cx43 expression was transiently induced following exposure to the peptide for 5-10 h, with an associated increase in Cx43 at points of cell-to-cell contact, returning to control levels by 18-24 h, via a post-translational mechanism independent of chelerythrine. A transient increase in Cx40 mRNA expression but not Cx43 mRNA expression was also observed. By contrast, AAP10 had no effect on the ability of Cx26 gap junctions to transfer the dyes or on the level of Cx26 expression. We propose that AAP10 is a versatile peptide that remodels metabolic coupling via Cx43 and to a lesser extent Cx40 gap junction channels via an initial protein-kinase-C-dependent pathway modifying local responses at the plasma membrane. This is followed by enhanced Cx43 or Cx40 protein expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-009-0411-2DOI Listing

Publication Analysis

Top Keywords

cx43 cx40
12
gap junctions
12
aap10
9
cx43
9
cx40
9
anti-arrhythmic peptide
8
peptide aap10
8
expression
8
coupling mediated
8
alexa 488
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!