Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

Int J Mol Sci

School of Chemistry and Chemical Engineering, ShiYou University, Xi'an 710065, P. R. China.

Published: March 2008

Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635680PMC
http://dx.doi.org/10.3390/ijms9030342DOI Listing

Publication Analysis

Top Keywords

latex blends
12
core-shell structure
8
thermal treatment
8
latex
6
core-shell
5
synthesis characterization
4
characterization core-shell
4
core-shell acrylate
4
acrylate based
4
based latex
4

Similar Publications

The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve superior elasticity and mechanical properties has been widely applied across various fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their potential applications. In this study, multi-walled carbon nanotube (MWCNT)-silica (SiO)/NR composites were prepared using a solution blending method, aiming to enhance the performance of NR composites through the synergistic effects of dual-component fillers.

View Article and Find Full Text PDF

Water-based coating has gained much attention globally due to environmental issues. This work aims to develop a waterborne epoxy coating incorporated with modified natural rubber (NR) latex for improved performance. For this purpose, the NR latex was modified into three types of low molecular weight epoxidized natural rubber (LENR) latex.

View Article and Find Full Text PDF

[Development of Solventless Pharmaceutical Technique for Manufacture of Pharmaceuticals].

Yakugaku Zasshi

October 2024

Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University.

The aim of our study was to develop a solventless drug pelletization and polymer coating technique for pharmaceutical manufacturing. This review describes a dry coating technique using a mechanical powder processor and a V-shaped blender to produce coated pellets or tablets by mechanically mixing polymer particles and core materials (such as drug pellets and uncoated tablets) without the need for a solvent. First, aqueous latexes comprising colloidal polymethacrylates and ethylcellulose were solidified by freeze drying to produce polymer particles for the dry coating process.

View Article and Find Full Text PDF

With the rapid development of the transport industry, there is a higher demand for environmental friendliness, durability, and stability of tires. Rubber composites with excellent mechanical properties, abrasion resistance, and low heat generation are very important for the preparation of green tires. In this study, the all-aqueous phase process was initially employed to prepare 2-Amino-5-mercapto-1,3,4-thiadiazole (AZT) functionalized graphene oxide (AGO).

View Article and Find Full Text PDF

Binary blends of polyterpenes are employed comprising cis-1,4-polyfarnesene (PF) with a bottlebrush architecture, and linear cis-1,4-polyisoprene (PI) as model systems toward supersoft polymer melts. The bottlebrush PF results in a low plateau modulus ( Pa) that can further be reduced with the addition of PI. Depending on the fraction of short PI chains in the athermal and nearly isofrictional blends, plateau moduli in the range from 1 to 10 kPa can be achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!