The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N=30; mean age=20.5 years, SD=1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous music, oudeterous synchronous music, and a no-music control. Dependent measures included time to exhaustion, ratings of perceived exertion (RPE), and in-task affect (both recorded at 2-min intervals), and exercise-induced feeling states. A one-way repeated measures ANOVA was used to analyze time to exhaustion data. Two-way repeated measures (Music Condition ? Trial Point) ANOVAs were used to analyze in-task measures, whereas a one-way repeated measures MANOVA was used to analyze the exercise-induced feeling states data. Results indicated that endurance was increased in both music conditions and that motivational music had a greater ergogenic effect than did oudeterous music (p<.01). In addition, in-task affect was enhanced by motivational synchronous music when compared with control throughout the trial (p<.01). The experimental conditions did not impact significantly (p>.05) upon RPE or exercise-induced feeling states, although a moderate effect size was recorded for the latter (etap2=.09). The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jsep.31.1.18 | DOI Listing |
Med Sci Sports Exerc
November 2024
Beijing Normal University, College of Physical Education and Sport, Xinjiekouwai Street, Beijing, CHINA.
Introduction: Perceived groove, a complex and integrated musical characteristic, is considered a core factor in inducing synchronization between movement and music. This study aimed to employ functional near-infrared spectroscopy (fNIRS) to explore the effective connectivity (EC) changes among brain regions during cycling activities under different perceived groove conditions.
Methods: In a randomized crossover design, 18 university students performed 3-min cycling tasks under high (HG) and low (LG) perceived groove music conditions.
J Clin Med
December 2024
Department of Musical, Plastic and Corporal Expression, University of Jaén, 23071 Jaén, Spain.
: Eye-foot coordination is essential in sports and daily life, enabling the synchronization of vision and movement for tasks like ball control or crossing obstacles. This study aimed to examine both the validity and reliability of an innovative eye-foot coordination (EFC) test in a dual-task paradigm in children aged 6-11 years and the capacity of this test to discriminate between sex and age. : A total of 440 schoolchildren aged 6-11 years participated in this cross-sectional study.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Neurology, Beau Soleil Clinic, Montpellier, France.
iScience
January 2025
Montreal Centre for Brain, Music and Sound (BRAMS), Montreal, QC, Canada.
People synchronize their movements more easily to rhythms with tempi closer to their preferred motor rates than with faster or slower ones. More efficient coupling at one's preferred rate, compared to faster or slower rates, should be associated with lower cognitive demands and better attentional entrainment, as predicted by dynamical system theories of perception and action. We show that synchronizing one's finger taps to metronomes at tempi outside of their preferred rate evokes larger pupil sizes, a proxy for noradrenergic attention, relative to passively listening.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!