Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C.

Invest Ophthalmol Vis Sci

Jules Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA 90095-7008, USA.

Published: August 2009

Purpose: To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C.

Methods: Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT).

Results: Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities.

Conclusions: The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893298PMC
http://dx.doi.org/10.1167/iovs.08-3358DOI Listing

Publication Analysis

Top Keywords

harmonin
8
mouse retina
8
dfcr mice
8
mutant ush1c
8
harmonin isoforms
8
isoforms expressed
8
expressed retina
8
ush1c patients
8
dfcr mouse
8
retina
7

Similar Publications

RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways.

View Article and Find Full Text PDF

Disruption of exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability.

Proc Natl Acad Sci U S A

March 2024

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin.

View Article and Find Full Text PDF

The regulator of telomere elongation helicase 1 (RTEL1) plays roles in telomere DNA maintenance, DNA repair, and genome stability by dismantling D-loops and unwinding G-quadruplex structures. RTEL1 comprises a helicase domain, two tandem harmonin homology domains 1&2 (HHD1 and HHD2), and a Zn2+-binding RING domain. In vitro D-loop disassembly by RTEL1 is enhanced in the presence of replication protein A (RPA).

View Article and Find Full Text PDF

The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!