Kinetics of lipid-membrane binding and conformational change of L-BABP.

Biochem Biophys Res Commun

Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina.

Published: May 2009

We designed an experimental approach to differentiate the kinetics of protein binding to a lipid membrane from the kinetics of the associated conformational change in the protein. We measured the fluorescence intensity of the single Trp6 in chicken liver bile acid-binding protein (L-BABP) as a function of time after mixing the protein with lipid membranes. We mixed the protein with pure lipid membranes, with lipid membranes in the presence of a soluble quencher, and with lipid membranes containing a fluorescence quencher attached to the lipid polar head group. We fitted simultaneously the experimental curves to a three-state kinetic model. We conclude that in a first step, the binding of L-BABP to the interfacial region of the anionic lipid polar head groups occurred simultaneously with a conformational change to the partly unfolded state. In a second slower step, Trp6 buried within the polar head group region, releasing contacts with the aqueous phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.03.103DOI Listing

Publication Analysis

Top Keywords

lipid membranes
16
conformational change
12
polar head
12
lipid polar
8
head group
8
lipid
7
protein
5
kinetics lipid-membrane
4
lipid-membrane binding
4
binding conformational
4

Similar Publications

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.

View Article and Find Full Text PDF

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!