We studied the behavior in water of polymers, microgels, and macrogels based on the following four monomers: N-isopropylacrylamide (NiPA), N-isopropylmethacrylamide (NiPMA), N-n-propylacrylamide (NnPA), and N-n-propylmethacrylamide (NnPMA). The thermal phase separation of polymers in water as well as of microgels in the aqueous dispersion was examined by a combination of turbidity measurements and differential scanning calorimetry (DSC). The hydrodynamic radius of microgels and the swelling degree of macrogels (fine cylindrical bulk gels) were also examined as a function of temperature using the dynamic light scattering and the microscopic method, respectively. It was found that all the polymers prepared are water-soluble and clearly exhibit the phase separation on heating. The phase separation temperature varies depending on the constituent monomers and becomes higher in the order of NiPMA > NiPA > NnPMA > NnPA. The endothermic enthalpy from the heating DSC curves increases in the order of NnPMA > NnPA approximately NiPMA > NiPA. The same trends were observed in the microgels based on NiPA, NiPMA, and NnPA, which were synthesized via chemical cross-linking with N,N'-methylenebis(acrylamide) (Bis). Although we were unable to synthesize the microgel of NnPMA due to a low water solubility of the monomer, its bulk gel was obtained by gamma-ray irradiation to an aqueous poly(NnPMA) solution at a dose of 10 kGy. An irradiation-cross-linked NiPMA gel was also prepared as a counterpart to the Bis-cross-linked gel. We then studied the gel collapses upon heating by use of the chemically cross-linked gels based on NiPA, NiPMA, and NnPA as well as of the irradiation-cross-linked NnPMA and NiPMA gels. All the gels underwent the collapse transition at a certain temperature which is close to or slightly higher than the phase separation temperature of the corresponding polymer solutions or microgel dispersions. These results indicate that in both the linear and cross-linked polymers there is no difference in the thermally induced interactions between the segments as well as between the segment and the solvent, but these interactions are dependent on the structure of the constituent monomers, i.e., whether the alpha-carbon bears a hydrogen atom or a methyl group and whether the N-propyl group is branched or straight chain. The structure dependence was discussed in terms of amide-amide and amide-water hydrogen bondings as well as of a possible hydrogen bonding of solvent water with the H-C bond of the alkyl groups. Then, water clustering around both the alkyl and the amide groups was considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la804286j | DOI Listing |
Nat Mater
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, 34517, Egypt.
RP-HPLC technique was developed and optimized for simultaneous identification and estimation of nirmatrelvir (NIR) and ritonavir (RIT) in their new copackaged tablet. Stability of nirmatrelvir (NIR) was studied after exposure to different five stress conditions; alkali, acid, heat, photo and oxidation degradation. The chromatographic separation was achieved using VDSpher PUR 100 ODS (4.
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.
View Article and Find Full Text PDFCell
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.
View Article and Find Full Text PDFMol Cell
January 2025
Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany. Electronic address:
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!