Optimal adaptive management for the translocation of a threatened species.

Ecol Appl

Commonwealth Environment Research Facility (Applied Environmental Decision Analysis), School of Integrative Biology, University of Queensland, St. Lucia, Queensland 4072, Australia.

Published: March 2009

Active adaptive management (AAM) is an approach to wildlife management that acknowledges our imperfect understanding of natural systems and allows for some resolution of our uncertainty. Such learning may be characterized by risky strategies in the short term. Experimentation is only considered acceptable if it is expected to be repaid by increased returns in the long term, generated by an improved understanding of the system. By setting AAM problems within a decision theory framework, we can find this optimal balance between achieving our objectives in the short term and learning for the long term. We apply this approach to managing the translocation of the bridled nailtail wallaby (Onychogalea fraenata), an endangered species from Queensland, Australia. Our task is to allocate captive-bred animals, between two sites or populations to maximize abundance at the end of the translocation project. One population, at the original site of occupancy, has a known growth rate. A population potentially could be established at a second site of suitable habitat, but we can only learn the growth rate of this new population by monitoring translocated animals. We use a mathematical programming technique called stochastic dynamic programming, which determines optimal management decisions for every possible management trajectory. We find optimal strategies under active and passive adaptive management, which enables us to examine the balance between learning and managing directly. Learning is more often optimal when we have less prior information about the uncertain population growth rate at the new site, when the growth rate at the original site is low, and when there is substantial time remaining in the translocation project. Few studies outside the area of optimal harvesting have framed AAM within a decision theory context. This is the first application to threatened species translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1890/07-1989.1DOI Listing

Publication Analysis

Top Keywords

growth rate
16
adaptive management
12
threatened species
8
short term
8
long term
8
decision theory
8
find optimal
8
translocation project
8
original site
8
rate population
8

Similar Publications

Animal growth is a fundamental component of population dynamics, which is closely tied to mortality, fecundity, and maturation. As a result, estimating growth often serves as the basis of population assessments. In fish, analysing growth typically involves fitting a growth model to age-at-length data derived from counting growth rings in calcified structures.

View Article and Find Full Text PDF

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

Severe early-onset scoliosis (EOS) can be addressed by different growth-friendly approaches, although the indications of each technique remain controversial. The aim of this study was to compare, in a large series of patients, the potential and limitations of the different distraction-based surgical techniques to establish the most suitable surgical approach to treat EOS. We conducted a retrospective observational cohort study evaluating 62 EOS cases treated between January 2002 and December 2021 with a traditional growing rod (TGR), a magnetically controlled growing rod (MCGR) and vertical expandable prosthesis titanium ribs (VEPTR) at IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!