Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia.

Anesthesiology

Department of Anesthesiology and Perioperative Care, Center for Neurobiology of Learning and Memory, University of California- Irvine, Irvine, California, USA.

Published: April 2009

Background: The Drosophila Shaker mutant fruit-fly, with its malfunctioning voltage-gated potassium channel, exhibits anesthetic requirements that are more than twice normal. Shaker mutants with an abnormal Kv1.2 channel also demonstrate significantly reduced sleep. Given the important role the thalamus plays in both sleep and arousal, the authors investigated whether localized central medial thalamic (CMT) microinfusion of an antibody designed to block the pore of the Kv1.2 channel might awaken anesthetized rats.

Methods: Male Sprague-Dawley rats were implanted with a cannula aimed at the CMT or lateral thalamus. One week later, unconsciousness was induced with either desflurane (3.6 +/- 0.2%; n = 55) or sevoflurane (1.2 +/- 0.1%; n = 51). Arousal effects of a single 0.5-microl infusion of Kv1.2 potassium channel blocking antibody (0.1- 0.2 mg/ml) or a control infusion of Arc-protein antibody (0.2 mg/ml) were then determined.

Results: The Kv1.2 antibody, but not the control antibody, temporarily restored consciousness in 17% of all animals and in 75% of those animals where infusions occurred within the CMT (P < 0.01 for each anesthetic). Lateral thalamic infusions showed no effects. Consciousness returned on average (+/- SD) 170 +/- 99 s after infusion and lasted a median time of 398 s (interquartile range: 279-510 s). Temporary seizures, without apparent consciousness, predominated in 33% of all animals.

Conclusions: These findings support the idea that the CMT plays a role in modulating levels of arousal during anesthesia and further suggest that voltage-gated potassium channels in the CMT may contribute to regulating arousal or may even be relevant targets of anesthetic action.

Download full-text PDF

Source
http://dx.doi.org/10.1097/aln.0b013e31819c461cDOI Listing

Publication Analysis

Top Keywords

voltage-gated potassium
12
potassium channel
12
microinfusion antibody
8
kv12 channel
8
antibody
6
channel
5
cmt
5
thalamic microinfusion
4
antibody voltage-gated
4
potassium
4

Similar Publications

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Objective: C-X-C motif chemokine receptor 2 (CXCR2) plays a crucial role in inflammation and immunity, and the involvement of chemokine receptors in the tumor microenvironment is extensively documented. However, the impact of CXCR2 deficiency on the complete transcriptome, including mRNA and ncRNAs, in tumor cells remains unclear.

Methods: In this study, we aimed to identify differentially expressed (DE) messenger RNA (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in CXCR2 knockout HeLa cells through transcriptome sequencing and to construct regulatory networks.

View Article and Find Full Text PDF

Background: Neural autoantibodies are being increasingly detected in conjunction with neurodegenerative dementias such as Alzheimer's disease dementia (AD), yet their significance is not well clarified. In this case report, we report the previously unreported long-lasting persistence of potassium voltage-gated channel subfamily A member 2 (KCNA2) antibodies in biomarker-supported AD.

Methods: We report on a 77-year-old, male patient evaluated in our outpatient memory clinic of the Department of Psychiatry and Psychotherapy, University Medical Center Göttingen.

View Article and Find Full Text PDF

Targeting Kv7 Potassium Channels for Epilepsy.

CNS Drugs

January 2025

Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy.

Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!