Cellulite is a disorder of the subcutaneous fat layer and the overlying superficial skin. Recently, radiofrequency (RF) has been proposed as an effective treatment of cellulite; however, the mechanism through which the absorbed electrical energy acts on the tissue is still not fully clear. This study reports on the histological findings from biopsies taken immediately after a single RF treatment session, on cellulite located in the buttocks, with a novel technology called automatic multi-frequency and low impedance (AMFLI) RF. Tissue samples were stained with either haematoxylin and eosin (H&E), so that we could study the morphological findings, or with oil red O, to enable us to identify lipid deposits. The histological findings observed in biopsies taken after a single RF treatment showed changes in shape, size, and lipid content, as well as in cytoplasmic and nuclear morphology. After RF treatment adipocytes were more polyhedric, with irregular, degenerated membranes, with less or no lipid content and apoptotic changes. We postulate that RF treatment on cellulite produces a decrease in lipid content of cells as well as changes in the adipocyte membrane which will lead to cell rupture and the death and extrusion of lipid content out of the cell. Further studies are needed to characterise the nature of the extra-cellular lipid material that we have demonstrated with the oil red O stain in our biopsies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-009-0664-5 | DOI Listing |
Semin Immunopathol
January 2025
Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.
View Article and Find Full Text PDFNanotoxicology
January 2025
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia.
In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
General Practice Department, Binzhou Medical University, Yantai, Shandong, China.
Objective: To explore the connection between metabolic parameters and the severity of hepatic steatosis determined through ultrasound in elderly individuals with metabolic dysfunction-associated fatty liver disease (MAFLD).
Methods: 4,663 senior individuals who were 65 years of age or older were included in this research. They were examined physically at the Ninghai Street Community Health Service Center in Yantai City between June 7, 2021, and October 15, 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!