Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from delta-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-009-9509-9 | DOI Listing |
Water Res
June 2023
Department of Environmental Technology, Wageningen University & Research, The Netherlands.
Metal sulfide precipitation is a viable technology for high-yield metal recovery from hydrometallurgical streams, with the potential to streamline the process design. A single-stage elemental sulfur (S)-reducing and metal sulfide precipitating process can optimize the operational and capital costs associated with this technology, boosting the competitiveness of this technology for wider industrial application. However, limited research is available on biological sulfur reduction at high temperature and low pH, frequent conditions of hydrometallurgical process waters.
View Article and Find Full Text PDFBiotechnol Bioeng
May 2017
Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, Republic of Korea.
In the present work, a two-stage anaerobic digestion system (TSADS) was newly designed to produce biogas with a greatly reduced H S content. The role of first (sulfidogenic)-stage digester was not only acidogenesis but also sulfidogenesis (sulfate reduction to H S), which would minimize the input of H S-producing source in the followed second (methanogenic)-stage digester. For the coexistence of acidogens and sulfate reducing bacteria (SRB) in the sulfidogenic-stage digester, it was found that pH played a crucial role.
View Article and Find Full Text PDFMicrob Ecol
October 2009
Department of Molecular Biology, Umeå University, Umeå 90187, Sweden.
Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.
View Article and Find Full Text PDFWater Sci Technol
October 2003
University of Central Florida, Department of Civil and Environmental Engineering, Orlando, Florida, USA.
The objective of this research was to determine if either methanogenic or sulfidogenic reductive dechlorination could survive an alternating anaerobic/aerobic sequence to biologically transform halogenated aliphatic hydrocarbons (HACs), specifically tetrachloroethylene (PCE), trichloroethylene (TCE), cis-1,2 dichloroethylene (cDCE), trans-1,2 dichloroethylene (tDCE), 1,1 dichloroethylene (1, 1DCE) and vinyl chloride (VC). This ability was considered to be a necessary prerequisite for complete anaerobic/aerobic mineralization of halogenated aliphatic hydrocarbons by a single microbial consortia. Chlorinated solvents, which are among the most common groundwater contaminants, have been partially dechlorinated using single-stage anaerobic environmental treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!