Catalytic disproportionation of N-alkylhydroxylamines bound to pentacyanoferrates.

Dalton Trans

Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata, B7602AYL, Argentina.

Published: February 2009

The substituted hydroxylamines, CH(3)N(H)OH (N-methylhydroxylamine) and (CH(3))(2)NOH (N,N-dimethylhydroxylamine), disproportionate catalytically to the corresponding alkylamines and oxidation products, only in the presence of [Fe(CN)(5)H(2)O](3-). Substitution kinetic measurements suggest an initial coordination step to Fe(ii). Two parallel N- and O-coordination modes are considered with the subsequent formation of Fe(iii), free aminyl (RNCH(3)) and nitroxide (RN(CH(3))O) radicals (R = H, CH(3)). With CH(3)N(H)OH, bound nitrosomethane, CH(3)NO, has been characterized by UV-visible and IR spectroscopies. The mechanism is discussed on the basis of common and differential features with respect to the disproportionation of hydroxylamine catalyzed by the same Fe-fragment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b812173gDOI Listing

Publication Analysis

Top Keywords

catalytic disproportionation
4
disproportionation n-alkylhydroxylamines
4
n-alkylhydroxylamines bound
4
bound pentacyanoferrates
4
pentacyanoferrates substituted
4
substituted hydroxylamines
4
hydroxylamines ch3nhoh
4
ch3nhoh n-methylhydroxylamine
4
n-methylhydroxylamine ch32noh
4
ch32noh nn-dimethylhydroxylamine
4

Similar Publications

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

Unlocking CO Activation With a Novel Ni-Hg-Ni Trinuclear Complex.

Angew Chem Int Ed Engl

January 2025

Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.

Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]Hg, [NiHg], featuring a trinuclear Ni-Hg-Ni core (POCOP=κ,κ,κ-2,6-(i-PrPO)CH). [NiHg] reacts with CO to give the carbonate-bridged complex [NiCO].

View Article and Find Full Text PDF

The reverse water gas shift reaction (RWGS) mechanism study on the γ-MoC(100) surface.

RSC Adv

January 2025

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China

CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!