E-Cadherin, a cell adhesion protein, has been shown to take part in the compartmentalization, proliferation, survival, and differentiation of cells. E-Cadherin is expressed in the adult and embryonic forebrain germinal zones in vivo, and in clonal colonies of cells derived from these regions and grown in vitro. Mice carrying E-Cadherin floxed genes crossed to mice expressing Cre under the Nestin promoter demonstrate defects in the self-renewal of neural stem cells both in vivo and in vitro. The functional role of E-Cadherin is further demonstrated using adhesion-blocking antibodies in vitro, which specifically target cadherin extracellular adhesive domains. Adult neural stem cell colonies decrease in the presence of E-Cadherin antibodies in a dosage-dependent manner, in contrast to P-Cadherin antibody. On overexpression of normal E-Cadherin and a mutated E-Cadherin, containing no intracellular binding domain, an increased number of clonal adult neural stem cell colonies are observed. These data suggest it is specifically E-Cadherin adhesion that is responsible for these self-renewal effects. These data show the importance of E-Cadherin in the neural stem cell niche and suggest E-Cadherin regulates the number of these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665048 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0037-09.2009 | DOI Listing |
Pharmaceutics
November 2024
Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan.
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.
View Article and Find Full Text PDFCells
December 2024
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Accurate normalization in miRNA studies requires the use of appropriate endogenous controls, which can vary significantly depending on cell types, treatments, and physiological or pathological conditions. This study aimed to identify suitable endogenous miRNA controls for neural progenitor cells (NPCs) and hippocampal tissues, both of which play crucial roles in neurogenesis. Using small RNA sequencing, we identified the most stable miRNAs in primary mouse NPCs and hippocampal tissues and accessed their stability using NormFinder analysis.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Quantitative and Systems Biology Graduate Program, Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.
Background/objectives: Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in larval brains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!