Phylloquinone (vitamin K(1)) is a bipartite molecule that consists of a naphthoquinone ring attached to a phytyl side chain. The coupling of these 2 moieties depends on the hydrolysis of the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA), which forms the naphthalenoid backbone. It is not known whether such a hydrolysis is enzymatic or chemical. In this study, comparative genomic analyses identified orthologous genes of unknown function that in most species of cyanobacteria cluster with predicted phylloquinone biosynthetic genes. The encoded approximately 16-kDa proteins display homology with some Hotdog domain-containing CoA thioesterases that are involved in the catabolism of 4-hydroxybenzoyl-CoA and gentisyl-CoA (2,5-dihydroxybenzoyl-CoA) in certain soil-dwelling bacteria. The Synechocystis ortholog, encoded by gene slr0204, was expressed as a recombinant protein and was found to form DHNA as reaction product. Unlike its homologs in the Hotdog domain family, Slr0204 showed strict substrate specificity. The Synechocystis slr0204 knockout was devoid of DHNA-CoA thioesterease activity and accumulated DHNA-CoA. As a result, knockout cells contained 13-fold less phylloquinone than their wild-type counterparts and displayed the typical photosensitivity to high light associated to phylloquinone deficiency in cyanobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660889PMC
http://dx.doi.org/10.1073/pnas.0900738106DOI Listing

Publication Analysis

Top Keywords

naphthoquinone ring
8
dedicated thioesterase
4
thioesterase hotdog-fold
4
hotdog-fold family
4
family required
4
required biosynthesis
4
biosynthesis naphthoquinone
4
ring vitamin
4
phylloquinone
4
vitamin phylloquinone
4

Similar Publications

Eleutherlene A (), an unprecedented carbon skeleton featuring an aryl-fused 6-methyl-2,7-dioxabicyclo[3.2.1]octane unit, and eleutherlene B (), a naphthoquinone derivative with interesting ring fusion of an α,β-unsaturated γ-lactam and a tetrahydropyran moiety, along with two novel naphthoquinone alkaloids, eleutherlenes C () and D (), were isolated from and identified.

View Article and Find Full Text PDF
Article Synopsis
  • Naphthoquinones are found in various natural cytotoxic compounds and can work alone or with other drug components to enhance their effects.
  • The study described the creation of new potent cytotoxic compounds by fusing naphthoquinones with oxazepines, leading to compounds with distinct mechanisms of action.
  • Two promising compounds, CM-568 and CM-728, showed strong cytotoxic effects on yeast cells, revealing different roles of reactive oxygen species in their action and suggesting potential use in pharmacology due to their unique effects on cell cycle and programmed death.
View Article and Find Full Text PDF

This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.

View Article and Find Full Text PDF

The article reports a hitherto-unknown aromatic proton transfer (APT) to the o-amine function chelated to manganese(II) ion and disintegration of the molecule generating an aryne intermediate. The reaction of (NQ)-NH(AQ) (LH) with manganese(II) acetate in boiling DMF generates [Mn(L)], where the LH ligands undergo disintegration forming manganese(II) complexes of AQ and an 1,4-naphthoquinonyne intermediate based on benzoquinone ring, that has been defined as [NQ-2H] (NQ and AQ abbreviate respectively 1,4-naphthoquinone and 8-aminoquinoline fragments). The fragmentation reaction of LH depends on the metal precursor used, solvent and temperature.

View Article and Find Full Text PDF

The regioselective synthesis of functionalized naphthoquinones the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using -nucleophiles, and the second scope using pyridine -oxides, with yields up to 74%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!