Recently, we identified several flavonoids as inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 in vitro and in vivo. PARP-1 is recognized as coactivator of nuclear factor-kappaB and plays a role in the pathophysiology of diseases with low-grade systemic inflammation, such as chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D). In this study, we assessed the antiinflammatory effects of flavonoids with varying PARP-1-inhibiting effects in whole blood from male patients with COPD or T2D and healthy men. A total of 10 COPD, 10 T2D patients, and 10 healthy volunteers matched for age and BMI were recruited. Blood from each participant was exposed to 1 microg/L lipopolysaccharide (LPS) over 16 h with or without preincubation with 10 micromol/L of flavone, fisetin, morin, or tricetin. Concentrations of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, -8, and -10 were measured in the supernatant. Preincubation with fisetin and tricetin strongly attenuated LPS-induced increases in concentrations of TNFalpha in blood from COPD patients [mean (+/- SEM): -41 +/- 4% (fisetin) and -31 +/- 4% (tricetin); P < 0.001] and IL-6 in blood from T2D patients [-31 +/- 5% (fisetin) and -29 +/- 6% (tricetin); P < or = 0.001]. Moreover, LPS-induced changes in TNFalpha and IL-6 concentrations were positively correlated with the extent of reduction by fisetin and tricetin. The PARP-1-inhibiting flavonoids fisetin and tricetin were able to attenuate LPS-induced cytokine release from leukocytes of patients with chronic systemic inflammation, indicating a potential application as nutraceutical agents for these patient groups.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.108.102756DOI Listing

Publication Analysis

Top Keywords

fisetin tricetin
12
cytokine release
8
blood male
8
male patients
8
patients chronic
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
type diabetes
8
systemic inflammation
8

Similar Publications

Separation of flavonoid isomers by cyclic ion mobility mass spectrometry.

Anal Chim Acta

March 2023

Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands. Electronic address:

Analytical techniques, such as liquid chromatography coupled to mass spectrometry (LC-MS) or nuclear magnetic resonance (NMR), are widely used for characterization of complex mixtures of (isomeric) proteins, carbohydrates, lipids, and phytochemicals in food. Food can contain isomers that are challenging to separate, but can possess different reactivity and bioactivity. Catechins are the main phenolic compounds in tea; they can be present as various stereoisomers, which differ in their chemical properties.

View Article and Find Full Text PDF

Antioxidant action of deprotonated flavonoids: Thermodynamics of sequential proton-loss electron-transfer.

Phytochemistry

December 2020

Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia. Electronic address:

Despite the intensive research on radical scavenging action of flavonoids, a systematic study of the thermochemistry for their mono-deprotonated species in aqueous solution is still missing. In this work, reaction enthalpies related to Sequential Proton-Loss Electron-Transfer (SPLET) mechanism were theoretically investigated for all mono-deprotonated forms of nine flavonoids: apigenin, luteolin, fisetin, kaempferol, quercetin, taxifolin, tricetin, tricin and cyanidin. Differences in reaction enthalpies of the first and the second deprotonation can be lower than 10 kJ mol, when two successive deprotonations occur in different aromatic rings of the molecule.

View Article and Find Full Text PDF

For the first time, the enzymatic inhibition activity of 13 synthetic flavonoids was assessed by quantitative structure-activity relationship (QSAR) modeling and molecular docking with the three states of the enzyme horseradish peroxidase (HRP). The results show that apigenin, quercetin, kaempferol, fisetin, tricetin, and luteolin exerted a high competitive inhibition on HRP (Ki between 0.14 and 1.

View Article and Find Full Text PDF

6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di- and polyhydroxylated flavones in kidney mesangial cells.

PLoS One

April 2016

Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America.

Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4',6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.

View Article and Find Full Text PDF

Recently, we identified several flavonoids as inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 in vitro and in vivo. PARP-1 is recognized as coactivator of nuclear factor-kappaB and plays a role in the pathophysiology of diseases with low-grade systemic inflammation, such as chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D). In this study, we assessed the antiinflammatory effects of flavonoids with varying PARP-1-inhibiting effects in whole blood from male patients with COPD or T2D and healthy men.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!