Self-association of short DNA loops through minor groove C:G:G:C tetrads.

Nucleic Acids Res

Departament de Química Orgànica and IBUB, Universitat de Barcelona, C/. Martí i Franquès 1-11, 08028 Barcelona, Spain.

Published: June 2009

In addition to the better known guanine-quadruplex, four-stranded nucleic acid structures can be formed by tetrads resulting from the association of Watson-Crick base pairs. When such association occurs through the minor groove side of the base pairs, the resulting structure presents distinctive features, clearly different from quadruplex structures containing planar G-tetrads. Although we have found this unusual DNA motif in a number of cyclic oligonucleotides, this is the first time that this DNA motif is found in linear oligonucleotides in solution, demonstrating that cyclization is not required to stabilize minor groove tetrads in solution. In this article, we have determined the solution structure of two linear octamers of sequence d(TGCTTCGT) and d(TCGTTGCT), and their cyclic analogue d, utilizing 2D NMR spectroscopy and restrained molecular dynamics. These three molecules self-associate forming symmetric dimers stabilized by a novel kind of minor groove C:G:G:C tetrad, in which the pattern of hydrogen bonds differs from previously reported ones. We hypothesize that these quadruplex structures can be formed by many different DNA sequences, but its observation in linear oligonucleotides is usually hampered by competing Watson-Crick duplexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691830PMC
http://dx.doi.org/10.1093/nar/gkp191DOI Listing

Publication Analysis

Top Keywords

minor groove
16
groove cggc
8
structures formed
8
base pairs
8
quadruplex structures
8
dna motif
8
linear oligonucleotides
8
self-association short
4
dna
4
short dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!