This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by ()OH radicals produced from cavitation bubbles (either in the bubble-bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble-liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical-pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2009.02.009DOI Listing

Publication Analysis

Top Keywords

sonochemical degradation
16
degradation
12
thermal decomposition
12
degradation recalcitrant
8
recalcitrant organic
8
organic pollutants
8
cavitation bubble
8
mechanistic features
8
features sonochemical
8
degradation pollutant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!