Background: Chronic ethanol intake is a significant risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The effects of ethanol on extracellular signal-regulated kinase (ERK) activation, transforming growth factor alpha (TGF-alpha), and HCC growth were examined in this study.
Methods: HepG2, SKHep, Hep3B human HCC cells, or normal human hepatocytes were treated with ethanol (0-100 mM), exogenous TGF-alpha, TGF-alpha neutralization antibody or the MEK inhibitor U0126. TGF-alpha levels were quantified by ELISA. Growth was determined by trypan blue-excluded cell counts. Cell cycle phase distribution was determined by flow cytometry. Protein expression was determined by Western blot.
Results: Ethanol treatment (10-40 mM) increased ERK activation in HepG2 and SKHep HCC cells but not in Hep3B or human hepatocyte cells. Growth increased in HepG2 (174 +/- 29%, P < 0.05) and SKHep (149 +/- 12%, P < 0.05) cells in response to ethanol treatment. Correspondingly, ethanol increased S phase distribution in these cells. U0126 suppressed ethanol-induced growth increases. Ethanol treatment for 24 h also raised TGF-alpha levels in HepG2 cells (118%-198%) and SKHep cells (112%-177%). Exogenous administration of recombinant TGF-alpha mimicked the ethanol-induced growth in HepG2 and SKHep cells; TGF-alpha neutralization antibody effectively abrogated this effect. The TGF-a neutralization antibody also prevented ERK activation by ethanol in HepG2 cells.
Conclusions: These data demonstrate that clinically relevant doses of ethanol stimulate ERK-dependent proliferation of HCC cells. Ethanol up-regulates TGF-alpha levels in HCC cells and enhances growth through cell cycles changes, which appear to be mediated through TGF-alpha-MEK-ERK signaling. Ethanol-MEK signaling in normal hepatocytes is absent, suggesting that ethanol promotion of HCC growth may in part depend upon the acquisition of cancer-specific signaling by hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732720 | PMC |
http://dx.doi.org/10.1016/j.jss.2008.11.836 | DOI Listing |
Dev Reprod
December 2024
Department of Histology, Jeju National University College of Medicine, Jeju 63243, Korea.
We previously reported that metformin, a widely prescribed antidiabetic drug, induces the accumulation of triglyceride (TG) together with the apoptotic death of H4IIE via AMP-activated protein kinase (AMPK) in hepatocellular carcinoma (HCC) cells. However, the effect of cytoplasmic fat accumulation on the growth of HCCs remains controversial. Herein, we investigated the effect of fatty acid synthase (FASN) inhibitors on the basal- or metformin-induced changes including the content of cytoplasmic TG and the viability of HCC cells.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, 510220, Guangzhou, China.
Background: Hepatocellular Carcinoma (HCC) is a highly prevalent cancer worldwide, necessitating effective treatment options. However, current treatments do not provide satisfactory results. Quinacrine, a synthetic drug belonging to the 9-aminoacridine family, has demonstrated promising antitumor effects.
View Article and Find Full Text PDFCell Signal
January 2025
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China. Electronic address:
The ribosomal protein L6 (RPL6) is significant in the progression of different cancer types. However, its precise role in hepatocellular carcinoma (HCC) remains unclear. This research demonstrated that the expression levels of RPL6 are notably decreased in HCC tissues.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China. Electronic address:
Lecithin cholesterol acyltransferase (LCAT), a crucial enzyme in lipid metabolism, plays important yet poorly understood roles in tumours, especially in hepatocellular carcinoma (HCC). In this study, our investigation revealed that LCAT is a key downregulated metabolic gene and an independent risk factor for poor prognosis in patients with HCC. Functional experiments showed that LCAT inhibited HCC cell proliferation, migration and invasion.
View Article and Find Full Text PDFPharmacol Res
January 2025
Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:
Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!