The ability to noninvasively measure photosensitizer concentration at target tissues will allow optimization of photodynamic therapy (PDT) and could improve outcome. In this study, we evaluated whether preirradiation tumor phthalocyanine 4 (Pc 4) concentrations, measured noninvasively by the optical pharmacokinetic system (OPS), correlated with tumor response to PDT. Mice bearing human breast cancer xenografts were treated with 2 mg kg(-1) Pc 4 iv only, laser irradiation (150 J cm(-2)) only, Pc 4 followed by fractionated irradiation or Pc 4 followed by continuous irradiation. Laser irradiation treatment was initiated when the tumor to skin ratio of Pc 4 concentration reached a maximum of 2.1 at 48 h after administration. Pc 4 concentrations in tumor, as well as in Intralipid in vitro, decreased monoexponentially with laser fluence. Pc 4-PDT resulted in significant tumor regression, and tumor response was similar in the groups receiving either fractionated or continuous irradiation treatment after Pc 4. Tumor growth delay following Pc 4-PDT correlated with OPS-measured tumor Pc 4 concentrations at 24 h prior to PDT (R2=0.86). In excised tumors, OPS-measured Pc 4 concentrations were similar to the HPLC-measured concentrations. Thus, OPS measurements of photosensitizer concentrations can be used to assist in the scheduling of Pc 4-PDT.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2009.00542.xDOI Listing

Publication Analysis

Top Keywords

phthalocyanine concentrations
8
concentrations measured
8
measured noninvasively
8
photodynamic therapy
8
tumor
8
tumor response
8
laser irradiation
8
continuous irradiation
8
irradiation treatment
8
concentrations
7

Similar Publications

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Carbon Nanotube-Based Chemiresistive Sensor Array for Dissolved Gases.

ACS Omega

November 2024

Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada.

Dissolved gases such as oxygen (DO) and ammonia (dNH) are among the most consequential parameters for the assessment of water quality. Since the concentrations of DO and dNH are interdependent through the nitrogen cycle, simultaneous monitoring can be useful in many applications. For example, in wastewater treatment, aeration baths are used to adjust the rate of removal of ammonia by the bioactive sludge.

View Article and Find Full Text PDF

A tumor-pH-responsive phthalocyanine as activatable type I photosensitizer for improved photodynamic immunotherapy.

J Photochem Photobiol B

December 2024

Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China. Electronic address:

The development of a simple drug formulation capable of achieving both activatable type I photoreaction and tumor-responsive release of immunomodulator is crucial for advancing photodynamic immunotherapy (PDIT). Herein, we present a nanostructured photosensitizer (NP5) that is activated by the acidic tumor microenvironment to produce type I reactive oxygen species (ROS) under light irradiation and release the immunomodulator demethylcantharidin (DMC) for PDIT. The NP5 is formed by self-assembly of a versatile phthalocyanine molecule which is composed of DMC and phthalocyanine linked via a pH-responsive amide bond.

View Article and Find Full Text PDF

Unraveling the intrinsic and photodynamic effects of aluminum chloride phthalocyanine on bioenergetics and oxidative state in rat liver mitochondria.

Toxicol Appl Pharmacol

January 2025

Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil. Electronic address:

Previous research has revealed that mitochondria are an important target for photodynamic therapy (PDT), which might be employed as a therapeutic approach for several malignancies, including hepatocellular carcinoma (HCC). In this study, we investigated both intrinsic toxicity and photodynamic effects of the photosensitizer (PS) aluminum chloride phthalocyanine (AlClPc) on mitochondrial functions. Several aspects of mitochondrial bioenergetics, structure, and oxidative state were investigated in the isolated mitochondria obtained from rat liver by differential centrifugation.

View Article and Find Full Text PDF

A rapid and sensitive paper-based sensor for sulfide ion detection in Chinese liquors.

Food Chem

February 2025

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address:

The accurate monitoring of sulfide ion concentrations is vital for ensuring food safety, but current detection methods are often cumbersome and confined to laboratories. This study introduces an innovative paper-based colorimetric sensor that leverages the peroxidase-like activity of cobalt tetrasulfonate phthalocyanine (CoTsPc) for rapid, sensitive, and selective sulfide ion quantification. The underlying mechanism relies on the interaction between cobalt and sulfide ions, modulating the catalytic efficiency of CoTsPc and triggering a visible color change when 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide are present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!