Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate- (ThDP-) dependent enzyme acting on aromatic substrates. In addition to its metabolic role in the mandelate pathway, BFDC shows broad substrate specificity coupled with tight stereo control in the carbon-carbon bond-forming reverse reaction, making it a useful biocatalyst for the production of chiral alpha-hydroxy ketones. The reaction of methyl benzoylphosphonate (MBP), an analogue of the natural substrate benzoylformate, with BFDC results in the formation of a stable analogue (C2alpha-phosphonomandelyl-ThDP) of the covalent ThDP-substrate adduct C2alpha-mandelyl-ThDP. Formation of the stable adduct is confirmed both by formation of a circular dichroism band characteristic of the 1',4'-iminopyrimidine tautomeric form of ThDP (commonly observed when ThDP forms tetrahedral complexes with its substrates) and by high-resolution mass spectrometry of the reaction mixture. In addition, the structure of BFDC with the MBP inhibitor was solved by X-ray crystallography to a spatial resolution of 1.37 A (PDB ID 3FSJ). The electron density clearly shows formation of a tetrahedral adduct between the C2 atom of ThDP and the carbonyl carbon atom of the MBP. This adduct resembles the intermediate from the penultimate step of the carboligation reaction between benzaldehyde and acetaldehyde. The combination of real-time kinetic information via stopped-flow circular dichroism with steady-state data from equilibrium circular dichroism measurements and X-ray crystallography reveals details of the first step of the reaction catalyzed by BFDC. The MBP-ThDP adduct on BFDC is compared to the recently solved structure of the same adduct on benzaldehyde lyase, another ThDP-dependent enzyme capable of catalyzing aldehyde condensation with high stereospecificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730839 | PMC |
http://dx.doi.org/10.1021/bi801950k | DOI Listing |
J Fluoresc
January 2025
College of Life Science, Northwest University, Xian, 710069, Shaanxi, China.
Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, China.
The two-dimensional (2D) "sandwich" structure composed of a cation plane located between two anion planes, such as anion-rich CrI, VS, VSe, and MnSe, possesses exotic magnetic and electronic structural properties and is expected to be a typical base for next-generation microelectronic, magnetic, and spintronic devices. However, only a few 2D anion-rich "sandwich" materials have been experimentally discovered and fabricated, as they are vastly limited by their conventional stoichiometric ratios and structural stability under ambient conditions. Here, we report a 2D anion-rich NaCl crystal with sandwiched structure confined within graphene oxide membranes with positive surface potential.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India.
As one of nature's most fundamental blueprints and due to its critical role in life processes, DNA has naturally become the cornerstone of numerous research efforts. One particularly intriguing area of study is understanding how small molecules interact with nucleic acids. In this study, we investigated the interaction between the plant-derived indole alkaloid Raubasine (Ajmalicine; AJM) and Salmon Testes (ST) DNA using biophysical and computational techniques.
View Article and Find Full Text PDFNano Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!