Mechanism of cadmium-mediated inhibition of Msh2-Msh6 function in DNA mismatch repair.

Biochemistry

Molecular Biology and Biochemistry Department, Wesleyan University, Middletown Connecticut 06459, USA.

Published: October 2009

The observation that Cadmium (Cd(2+)) inhibits Msh2-Msh6, which is responsible for identifying base pair mismatches and other discrepancies in DNA, has led to the proposal that selective targeting of this protein and consequent suppression of DNA repair or apoptosis promote the carcinogenic effects of the heavy metal toxin. It has been suggested that Cd(2+) binding to specific sites on Msh2-Msh6 blocks its DNA binding and ATPase activities. To investigate the mechanism of inhibition, we measured Cd(2+) binding to Msh2-Msh6, directly and by monitoring changes in protein structure and enzymatic activity. Global fitting of the data to a multiligand binding model revealed that binding of about 100 Cd(2+) ions per Msh2-Msh6 results in its inactivation. This finding indicates that the inhibitory effect of Cd(2+) occurs via a nonspecific mechanism. Cd(2+) and Msh2-Msh6 interactions involve cysteine sulfhydryl groups, and the high Cd(2+):Msh2-Msh6 ratio implicates other ligands such as histidine, aspartate, glutamate, and the peptide backbone as well. Our study also shows that cadmium inactivates several unrelated enzymes similarly, consistent with a nonspecific mechanism of inhibition. Targeting of a variety of proteins, including Msh2-Msh6, in this generic manner would explain the marked broad-spectrum impact of Cd(2+) on biological processes. We propose that the presence of multiple nonspecific Cd(2+) binding sites on proteins and their propensity to change conformation on interaction with Cd(2+) are critical determinants of the susceptibility of corresponding biological systems to cadmium toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684310PMC
http://dx.doi.org/10.1021/bi9001248DOI Listing

Publication Analysis

Top Keywords

cd2+ binding
12
cd2+
9
mechanism inhibition
8
nonspecific mechanism
8
msh2-msh6
7
binding
6
mechanism
4
mechanism cadmium-mediated
4
cadmium-mediated inhibition
4
inhibition msh2-msh6
4

Similar Publications

Bisquinoline-based fluorescent cadmium sensors.

Dalton Trans

January 2025

Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan.

Rational molecular design afforded fluorescent Cd sensors based on bisquinoline derivatives. Introduction of three methoxy groups at the 5,6,7-positions of the quinoline rings of BQDMEN (,'-bis(2-quinolylmethyl)-,'-dimethylethylenediamine) resulted in the reversal of metal ion selectivity in fluorescence enhancement from zinc to cadmium. Introduction of bulky alkyl groups and an ,-bis(2-quinolylmethyl)amine structure, as well as replacement of one of the two tertiary amine binding sites with an oxygen atom and the use of a 1,2-phenylene backbone significantly improved the Cd specificity.

View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

Herein, we have used a simple synthetic strategy to access a novel non-sulfur fluorescent molecular probe coumarin and 1,8-napthyridine conjugated probe DNCS. The developed probe has great selectivity and sensitivity for detecting Hg ions. Our photophysical properties evaluation for the synthesized probe with different metal ions (Ba, Al, Ca, Bi, Ce, Cd, Cu, Sr, Co, Fe, Cr, Fe, Mn, Hg, Zn, Pb, Ni, and Sn) unveiled the very selective and sensitive fluorescence sensing behavior with Hg ions in the energy window of near UV and visible light radiation in an organic aqueous solvent mixture (EtOH and water).

View Article and Find Full Text PDF

Unlabelled: African swine fever virus (ASFV) is a high-consequence pathogen posing a substantial threat to global food security. This large DNA virus encodes more than 150 open reading frames, many of which are uncharacterized. The gene encodes CD2v, a glycoprotein expressed on the surface of infected cells and the only viral protein known to be present in the virus external envelope.

View Article and Find Full Text PDF

Cadmium pollution is widespread in water and soil worldwide. Microbial remediation is an effective method for removing heavy metals. This study explored the cadmium remediation mechanism and efficiency of Lysinibacillus fusiformis S01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!