Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacteriogenic iron oxides (BIOS) were obtained from a dilute, circumneutral groundwater seep, characterized with respect to mineralogy, and examined for their ability to sorb aqueous Sr2+. BIOS were composed of microbial sheaths encrusted in 2-line ferrihydrite. Sorption experiments indicated that Sr remained completely unbound at pH < 4.5, but sorption increased with increasing pH (maximum of 95% at pH > 7.6). EXAFS analysis of Sr-loaded BIOS failed to elucidate whether Sr sorption occurred on sites specific to the mineral or microbial fraction, but indicated that sorption likely occurred by outer-sphere complexation between BIOS and hydrated Sr2+. Sorption experiments showed that at low ionic strength (I = 0.001 M), sorption followed a Langmuir isotherm (S(max) = 3.41 mol Sr (g of Fe)(1-), K(ads) = 1.26). At higher ionic strength (I = 0.1 M), there was significant inhibition of Sr sorption (S(max) = 1.06 mol Sr (g of Fe)(1-), K(ads) = 1.23), suggesting that sorption to BIOS occurs by outer-sphere complexation. The results suggest that, under dilute circumneutral conditions, BIOS deposits should efficiently sorb dissolved Sr from groundwater flow systems where such deposits exist. This finding has particular relevance to sites impacted by radioactive 90Sr groundwater contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es802027f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!