Autosomal dominant hypercholesterolemia (ADH), a major risk for coronary heart disease, is associated with mutations in the genes encoding the low-density lipoproteins receptor (LDLR), its ligand apolipoprotein B (APOB) or PCSK9 (Proprotein Convertase Subtilin Kexin 9). Familial hypercholesterolemia (FH) caused by mutation in the LDLR gene is the most frequent form of ADH. The incidence of FH is particularly high in the Lebanese population presumably as a result of a founder effect. In this study we characterize the spectrum of the mutations causing FH in Lebanon: we confirm the very high frequency of the LDLR p.Cys681X mutation that accounts for 81.5 % of the FH Lebanese probands recruited and identify other less frequent mutations in the LDLR. Finally, we show that the p.Leu21dup, an in frame insertion of one leucine to the stretch of 9 leucines in exon 1 of PCSK9, known to be associated with lower LDL-cholesterol levels in general populations, is also associated with a reduction of LDL-cholesterol levels in FH patients sharing the p.C681X mutation in the LDLR. Thus, by studying for the first time the impact of PCSK9 polymorphism on LDL-cholesterol levels of FH patients carrying a same LDLR mutation, we show that PCSK9 might constitute a modifier gene in familial hypercholesterolemia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21002DOI Listing

Publication Analysis

Top Keywords

familial hypercholesterolemia
12
ldl-cholesterol levels
12
modifier gene
8
mutation ldlr
8
levels patients
8
ldlr
7
pcsk9
5
molecular basis
4
basis familial
4
hypercholesterolemia
4

Similar Publications

Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia.

Clin Chim Acta

January 2025

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:

Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is a genetic disease, usually with onset during childhood, characterized by elevated blood LDL cholesterol levels and potentially associated with severe cardiovascular complications. Concerning mutated genes in FH, such as , a small subset of FH patients presents a homozygous genotype, resulting in homozygous FH (HoFH) disease with a generally aggressive phenotype. Besides statins, ezetimibe and PCSK9 inhibitors, lomitapide (an anti-ApoB therapy) was also approved in 2012-2013 as an adjunctive treatment for HoFH.

View Article and Find Full Text PDF

Purpose Of Review: Patients with familial hypercholesterolemia have an elevated risk of premature atherosclerotic cardiovascular disease. Risks can be minimized through pharmacological and 'lifestyle' behavioral (low fat diet, physical activity) therapies, although therapeutic adherence is sub-optimal. Behavioral interventions to promote familial hypercholesterolemia therapy adherence should be informed by theory-based psychological determinants for maximal efficacy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia.

View Article and Find Full Text PDF

Despite the implementation of next-generation sequencing-based genetic testing on patients with clinical familial hypercholesterolemia (FH), most cases lack complete genetic characterization. We aim to investigate the utility of the polygenic risk score (PRS) in specifying the genetic background of patients from the Latvian Registry of FH (LRFH). We analyzed the whole-genome sequencing (WGS) data of the clinically diagnosed FH patients (n = 339) and controls selected from the Latvian reference population (n = 515).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!