Assessment of HIV tropism using bioinformatic tools based on V3 sequences correlates poorly with results provided by phenotypic tropism assays, particularly for recognizing X4 viruses. This may represent an obstacle for the use of CCR5 antagonists. An algorithm combining several bioinformatic tools might improve the correlation with phenotypic tropism results. A total of 200 V3 sequences from HIV-1 subtype B, available in several databases with known phenotypic tropism results, were used to evaluate the sensitivity and specificity of seven different bioinformatic tools (PSSM, SVM, C4.5 decision tree generator and C4.5, PART, Charge Rule, and Geno2pheno). The best predictive bioinformatic tools were identified, and a model combining several of these was built. Using the 200 reference sequences, SVM and geno2-pheno showed the highest sensitivity for detecting X4 viruses (98.8% and 93.7%, respectively); however, their specificity was relatively low (62.5% and 86.6%, respectively). For R5 viruses, PSSM and C4.5 gave the same results and outperformed other bioinformatic tools (95.7% sensitivity, 82% specificity). When results from three out of these four tools were concordant, the sensitivity and specificity, taking as reference the results from phenotypic tropism assays, were over 90% in predicting either R5 or X4 viruses (AUC: 0.9701; 95% CI: 0.9358-0.9889). An algorithm combining four distinct bioinformatic tools (SVM, geno2pheno, PSSM and C4.5), improves the genotypic prediction of HIV tropism, and merits further evaluation, as it might prove useful as a screening strategy in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.21425 | DOI Listing |
Vet Med Int
January 2025
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines.
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
The majority of enantioselective organocatalytic reactions occur in apolar or weakly polar organic solvents. Nevertheless, the influence of solute-solvent van der Waals forces on the relative kinetics of competitive pathways remains poorly understood. In this study, we provide a first insight into the nature and strength of these interactions at the transition state level using advanced computational tools, shedding light into their influence on the selectivity.
View Article and Find Full Text PDFHere, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Biology, Faculty of Sciences, University of Pécs, H-7624, Pécs, Hungary.
In the global effort to discover or design new effective antibiotics to fight infectious diseases, the increasingly available multi-omics data with novel bioinformatics tools open up new horizons for the exploration of the genetic potential of bacteria to synthesize bioactive secondary metabolites. Rare actinomycetes are a prolific source of structurally diverse secondary metabolites that exhibit remarkable clinical and industrial importance. Recently several excellent genome mining tools have been available for identifying biosynthetic gene clusters, however in cases of poor-quality sequences and inappropriate genome assembly, these tools are not always able to identify the corresponding gene clusters.
View Article and Find Full Text PDFCancer Discov
January 2025
CRUK Cambridge Institute, University of Cambridge. Li Ka Shing Centre, Cambridge, United Kingdom.
The Imaging and Molecular Annotation of Xenografts and Tumors Cancer Grand Challenges team was set up with the objective of developing the "next generation" of pathology and cancer research by using a combination of single-cell and spatial omics tools to produce 3D molecularly annotated maps of tumors. Its activities overlapped, and in some cases catalyzed, a spatial revolution in biology that saw new technologies being deployed to investigate the roles of tumor heterogeneity and of the tumor micro-environment. See related article by Stratton et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!