Characterizing and controlling the inherent dynamics of cyclophilin-A.

Protein Sci

Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA.

Published: April 2009

With the recent advances in NMR relaxation techniques, protein motions on functionally important timescales can be studied at atomic resolution. Here, we have used NMR-based relaxation experiments at several temperatures and both 600 and 900 MHz to characterize the inherent dynamics of the enzyme cyclophilin-A (CypA). We have discovered multiple chemical exchange processes within the enzyme that form a "dynamic continuum" that spans 20-30 A comprising active site residues and residues proximal to the active site. By combining mutagenesis with these NMR relaxation techniques, a simple method of counting the dynamically sampled conformations has been developed. Surprisingly, a combination of point mutations has allowed for the specific regulation of many of the exchange processes that occur within CypA, suggesting that the dynamics of an enzyme may be engineered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762593PMC
http://dx.doi.org/10.1002/pro.89DOI Listing

Publication Analysis

Top Keywords

inherent dynamics
8
nmr relaxation
8
relaxation techniques
8
dynamics enzyme
8
exchange processes
8
active site
8
characterizing controlling
4
controlling inherent
4
dynamics cyclophilin-a
4
cyclophilin-a advances
4

Similar Publications

Translational nanorobotics breaking through biological membranes.

Chem Soc Rev

January 2025

Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.

In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots.

View Article and Find Full Text PDF

An inherently discrete-time model based on the mass action law for a heterogeneous population.

Math Biosci Eng

December 2024

Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.

In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.

View Article and Find Full Text PDF

The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library.

Small Methods

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly.

View Article and Find Full Text PDF

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.

View Article and Find Full Text PDF

We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!