With the recent advances in NMR relaxation techniques, protein motions on functionally important timescales can be studied at atomic resolution. Here, we have used NMR-based relaxation experiments at several temperatures and both 600 and 900 MHz to characterize the inherent dynamics of the enzyme cyclophilin-A (CypA). We have discovered multiple chemical exchange processes within the enzyme that form a "dynamic continuum" that spans 20-30 A comprising active site residues and residues proximal to the active site. By combining mutagenesis with these NMR relaxation techniques, a simple method of counting the dynamically sampled conformations has been developed. Surprisingly, a combination of point mutations has allowed for the specific regulation of many of the exchange processes that occur within CypA, suggesting that the dynamics of an enzyme may be engineered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762593 | PMC |
http://dx.doi.org/10.1002/pro.89 | DOI Listing |
Chem Soc Rev
January 2025
Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.
In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.
View Article and Find Full Text PDFSmall Methods
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly.
View Article and Find Full Text PDFVet Med Int
January 2025
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines.
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.
View Article and Find Full Text PDFJ Struct Biol X
June 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!