Mechanisms underlying maternal venous adaptation in pregnancy.

Reprod Sci

Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.

Published: June 2009

To define the effects of pregnancy on mechanical properties and reactivity, mesenteric veins from late pregnant and virgin control (nonpregnant) rats were pressurized to determine gestational changes in size and distensibility. Reactivity studies used an adrenergic constrictor (norepinephrine) and an endothelium-mediated vasodilator (acetylcholine). The contribution of nitric oxide to endothelial function was evaluated with pharmacologic inhibition of nitric oxide synthase. Roles of nitric oxide and cyclic guanosine monophosphate in smooth muscle vasodilation were determined using an nitric oxide donor with and without cyclic guanosine monophosphate inhibition using ODQ, a selective inhibitor of guanylyl cyclase. In pregnancy, endothelium-dependent vasodilation markedly increased (largely due to endogenous nitric oxide), smooth muscle response to nitric oxide decreased (primarily related to cyclic guanosine monophosphate production), and norepinephrine sensitivity decreased considerably, with no changes in vessel size or distensibility. Our results identify a provasodilatory state in the systemic venous system, which would serve to facilitate the accommodation to plasma volume expansion requisite for normal pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707829PMC
http://dx.doi.org/10.1177/1933719109332820DOI Listing

Publication Analysis

Top Keywords

nitric oxide
24
cyclic guanosine
12
guanosine monophosphate
12
size distensibility
8
smooth muscle
8
nitric
6
oxide
6
mechanisms underlying
4
underlying maternal
4
maternal venous
4

Similar Publications

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.

View Article and Find Full Text PDF

Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.

Chin J Integr Med

January 2025

Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.

Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.

View Article and Find Full Text PDF

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!