The series of 4-(benzylaminomethylene)isoquinoline-1,3-(2H,4H)-dione and 4-[(pyridylmethyl)aminomethylene]isoquinoline-1,3-(2H,4H)-dione derivatives reported here represents a novel class of potential antitumor agents, which potently and selectively inhibit CDK4 over CDK2 and CDK1. In the benzylamino headpiece, a 3-OH substituent is required on the phenyl ring for CDK4 inhibitory activity, which is further enhanced when an iodo, aryl, heteroaryl, t-butyl, or cyclopentyl substituent is introduced at the C-6 position of the isoquinoline-1,3-dione core. To circumvent the metabolic liability associated with the phenolic OH group on the 4-substituted 3-OH phenyl headpiece, we take two approaches: first, introduce a nitrogen o- or p- to the 3-OH group in the phenyl ring; second, replace the phenyl headpiece with N-substituted 2-pyridones. We present here the synthesis, SAR data, metabolic stability data, and a CDK4 mimic model that explains the binding, potency, and selectivity of our CDK4 selective inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm801026e | DOI Listing |
Sci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.
Antimicrobial Resistance poses a major threat to human health worldwide. Microorganisms develop multi-drug resistance due to intrinsic factors, evolutionary chromosomal alterations, and horizontal gene transfer. , a common nosocomial bacterium, can cause various infections and is classified as multidrug-resistant.
View Article and Find Full Text PDFClin Infect Dis
December 2024
Université Paris Cité, Inserm, IAME, F-75018, Paris, France.
Lenacapavir is the first capsid inhibitor, its use is currently approved for multidrug resistant HIV-1 infection. We report that, despite an initial efficacy of a LEN-containing regimen in patients with multi-drug resistant HIV-2 viruses, virological suppression was not achieved after a year and most patients selected capsid drug-resistance associated mutations.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Physics, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!