We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la804267nDOI Listing

Publication Analysis

Top Keywords

resistive switching
12
switching memory
12
memory devices
12
binary transition
8
transition metal
8
metal oxides
8
devices
6
switching
5
devices composed
4
binary
4

Similar Publications

Purpose: The delayed or missed diagnosis of secondary hypertension contributes to the poor blood pressure control worldwide. This study aimed to assess the diagnostic approach to primary aldosteronism (PA) and pheochromocytoma (PHEO) among Italian centers associated to European and Italian Societies of Hypertension.

Methods: Between July and December 2023, a 10-items questionnaire was administered to experts from 82 centers of 14 Italian regions and to cardiologists from the ARCA (Associazioni Regionali Cardiologi Ambulatoriali) Piemonte.

View Article and Find Full Text PDF

Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear.

View Article and Find Full Text PDF

Osteomyelitis is commonly caused by pathogens like , but rare organisms such as , typically associated with superficial skin infections, can also be implicated. Recognizing these atypical pathogens presents diagnostic and therapeutic challenges, especially in the presence of orthopedic hardware. We conducted a literature review yielding 25 studies and encompassing 797 patient cases, which highlights the emerging role of species in osteomyelitis, particularly following trauma or surgical interventions.

View Article and Find Full Text PDF

Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.

View Article and Find Full Text PDF

Combined feature of enhanced stability and multi-level switching observed in TiN/Ta2O5/Ag-NPs/ITO/PET structure.

Nanotechnology

January 2025

Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang Area, Shanghai 200240, Shanghai, 200240, CHINA.

Both stability and multi-level switching are crucial performance aspects for resistive random-access memory (RRAM), each playing a significant role in improving overall device performance. In this study, we successfully integrate these two features into a single RRAM configuration by embedding Ag-nanoparticles (Ag-NPs) into the TiN/Ta2O5/ITO structure. The device exhibits substantially lower switching voltages, a larger switching ratio, and multi-level switching phenomena compared to many other nanoparticle-embedded devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!