Transition-metal complexes containing redox-active quinoid ligands are of interest because of their catalytic capabilities in multielectron, substrate-activation reactions such as dioxygenase catalysis using O(2). The new catecholate complex V(V)(3,6-DBSQ)(3,6-DBCat)(2) (where 3,6-DBSQ = 3,6-di-tert-butylsemiquinone and 3,6-DBCat = 3,6-di-tert-butylcatecholate) was synthesized by combining VO(acac)(2) with 1 equiv of 3,6-DBBQ (where 3,6-DBBQ = 3,6-di-tert-butylbenzoquinone) and 2 equiv of H(2)(3,6-DBCat) in dry methanol under an inert atmosphere. The resultant complex was characterized by single-crystal X-ray diffraction, elemental analysis, near-IR, UV/vis, and electron paramagnetic resonance (EPR) spectroscopy. The crystallography as well as the near-IR and EPR studies suggest that the radical spin is localized on the 3,6-DBSQ ligand at room temperature, making V(V)(3,6-DBSQ)(3,6-DBCat)(2) a type 1 mixed-valence complex. Initial dioxygenase catalysis studies reveal that V(V)(3,6-DBSQ)(3,6-DBCat)(2) is a good dioxygenase precatalyst for the substrate H(2)(3,6-DBCat) with O(2) in ca. 600 total turnovers to >93% intra- and extradiol products with only 1-2% of the undesired benzoquinone autoxidation product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic802122qDOI Listing

Publication Analysis

Top Keywords

dioxygenase catalysis
8
synthesis characterization
4
vv36-dbsq36-dbcat2
4
characterization vv36-dbsq36-dbcat2
4
vv36-dbsq36-dbcat2 metal
4
complex
4
metal complex
4
dioxygenase
4
complex dioxygenase
4
dioxygenase catalytic
4

Similar Publications

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenases use 2OG and O cofactors to catalyse substrate oxidation and yield oxidised product, succinate, and CO. Simultaneous detection of substrate and cofactors is difficult, contributing to a poor understanding of the dynamics between substrate oxidation and 2OG decarboxylation activities. Here, we profile 5-methylcytosine (C)-oxidising Ten-Eleven Translocation (TET) enzymes using MS and H NMR spectroscopy methods and reveal a high degree of substrate oxidation-independent 2OG turnover under a range of conditions.

View Article and Find Full Text PDF

High-efficiency production of plant-derived pigment dopaxanthin in Escherichia coli by combination engineering.

Microb Cell Fact

December 2024

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Dopaxanthin is a natural pigment betaxanthins family member with the highest antioxidant and free radical scavenging activities. However, its relatively low content in plants limited the wide range of applications. Cost-efficient microbial production, therefore, showed an attractive alternative.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants and play a defensive role against a variety of abiotic and biotic stresses. Also, it exhibits anti-cancer activity against cancer cell in human. Different profiles of aliphatic GSL compounds between radish and Chinese cabbage were previously reported.

View Article and Find Full Text PDF

Giardia duodenalis flavohemoglobin is a target of 5-nitroheterocycle and benzimidazole compounds acting as enzymatic inhibitors or subversive substrates.

Free Radic Biol Med

December 2024

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Mexico City, Mexico. Electronic address:

Giardia duodenalis causes giardiasis in humans, companion, livestock and wild animals. Control of infection involves drugs as benzimidazoles (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!