Splicing mutations occurring outside the invariant GT and AG dinucleotides are frequent in disease genes and the definition of their pathogenic potential is often challenging. We have identified four patients affected by Ullrich congenital muscular dystrophy and carrying unusual mutations of COL6 genes affecting RNA splicing. In three cases the mutations occurred in the COL6A2 gene and consisted of nucleotide substitutions within the degenerated sequences flanking the canonical dinucleotides. In the fourth case, a genomic deletion occurred which removed the exon8-intron8 junction of the COL6A1 gene. These mutations induced variable splicing phenotypes, consisting of exon skipping, intron retention and cryptic splice site activation/usage. A quantitative RNA assay revealed a reduced level of transcription of the mutated in-frame mRNA originating from a COL6A2 point mutation at intronic position +3. At variance, the transcription level of the mutated in-frame mRNA originating from a genomic deletion which removed the splicing sequences of COL6A1 exon 8 was normal. These findings suggest a different transcriptional efficiency of a regulatory splicing mutation compared to a genomic deletion causing a splicing defect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.21022 | DOI Listing |
iScience
January 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.
View Article and Find Full Text PDFBiochemistry
January 2025
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .
View Article and Find Full Text PDFScience
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Topkapı mh, Gureba Hastanesi Cd. No:69, 34093, Fatih, Istanbul, Turkey.
IKZF1 deletions (ΔIKZF1) are common in precursor B-cell acute lymphoblastic leukemia (B-ALL) and are assumed to have a prognostic impact. We aimed to determine the prognostic implications of ΔIKZF1 and CRLF2 overexpression in pediatric B-ALL. Furthermore, we sought to compare the multiplex polymerase chain reaction (PCR) assay with standard multiplex ligand-dependent probe amplification (MLPA) methods to ascertain IKZF1 status in a clinical context.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!