The molecular components of membrane rafts are frequently defined by their biochemical partitioning into detergent-resistant membranes. In the present study, we used a combination of epifluorescence and two-photon microscopy to visualize and quantify whether this insolubility in detergent reflects a pre-existing organization of the PM (plasma membrane). We found that the treatment of cells with cold TX (Triton X-100) promotes a profound remodelling of the PM, including a rapid rearrangement of the glycosphingolipid GM1 and cholesterol into newly formed structures, only partial solubilization of fluid domains and the formation of condensed domains that cover 51% of the remaining membrane. TX does not appear to induce the coalescence of pre-existing domains; instead, the domains that remain after TX treatment seem to be newly formed with a higher degree of condensation than those observed in native membranes. However, when cholesterol was complexed physically by treatment with a second detergent, such as saponin, cholesterol did not separate into the newly formed structures, condensation of the domains was unaltered, and the relative area corresponding to ordered domains increased to occupy 62% of the remaining membrane. Our results suggest that detergent can be used to enrich ordered domains for biochemical analysis, but that TX treatment alone substantially alters the lateral organization of the PM.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20090051DOI Listing

Publication Analysis

Top Keywords

newly formed
12
triton x-100
8
x-100 promotes
8
plasma membrane
8
formed structures
8
remaining membrane
8
ordered domains
8
domains
7
membrane
5
promotes cholesterol-dependent
4

Similar Publications

Objectives: Cost-effectiveness analysis (CEA) is an accepted approach to evaluate cancer screening programmes. CEA estimates partially depend on modelling methods and assumptions used. Understanding common practice when modelling cancer relies on complete, accessible descriptions of prior work.

View Article and Find Full Text PDF

Phase-separated condensates in autophagosome formation and autophagy regulation.

J Mol Biol

January 2025

National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Biomacromolecules partition into numerous types of biological condensates or membrane-less organelles via liquid-liquid phase separation (LLPS). Newly formed liquid-like condensates may further undergo phase transition to convert into other material states, such as gel or solid states. Different biological condensates possess distinct material properties to fulfil their physiological functions in diverse cellular pathways and processes.

View Article and Find Full Text PDF

The impact of glidant addition on the loss-in-weight feeding of active pharmaceutical ingredients.

Int J Pharm

January 2025

Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium. Electronic address:

In recent years, continuous manufacturing (CM) has become increasingly popular in the pharmaceutical industry for the production of oral solid dosage (OSD) forms. Most of the newly developed active pharmaceutical ingredients (APIs) nowadays are extremely cohesive and sticky with a mean particle size particle of <100μm, a wide particle size distribution (PSD) and a high tendency to agglomerate, making them difficult to accurately dose using loss-in-weight equipment during CM. In this research paper, the effect of various glidants on the volumetric and gravimetric feeding of several APIs was assessed.

View Article and Find Full Text PDF

Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.

View Article and Find Full Text PDF

A computational chemistry-based approach to optimizing PD-1/PD-L1 inhibitors.

Front Chem

January 2025

Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.

Introduction: To design effective small molecule inhibitors targeting the immune checkpoint PD-1/PD-L1 and to explore their inhibitory activity.

Methods: In this paper, a total of 69 PD-1/PD-L1 inhibitors with the same backbone were searched through opendatabases, and their docking mechanism with PD-L1 protein was investigatedby molecular docking method, and the active conformation of the inhibitors was explored. The biological activity of the four newly designed inhibitors was also evaluated using ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!