A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. | LitMetric

The identification of cell components involved in probiotic activities is a challenge in current probiotic research. In this work, a new approach based on proteomics as an analytical tool for the identification of characteristic protein profiles related to adhesion to mucin as a model probiotic property was used. Three Lactobacillus plantarum strains with different adhesion rates were used for proteomic analysis: L. plantarum WHE 92 (15.9%), L. plantarum 299 v (9.1%) and L. plantarum CECT 4185 (1.4%). Cell wall extracts were subjected to proteomic analysis of differential protein expression using 2-DE, tryptic digestion, chip-LC-QTOF mass analysis and protein identification using database search. Several proteins, previously reported to be involved in bacterial adhesion: elongation factor EF-Tu, GroEL chaperonin, molecular chaperone DnaK and glyceraldehyde-3-phosphate dehydrogenase were found to be overexpressed in the cell wall proteome of the highly adhesive strain L. plantarum WHE 92. The overexpression of two spots containing GroES co-chaperonin in the most adhesive strain also suggested the involvement of this protein in the adhesion process. The association of proteomic profiles and proteins with particular probiotic properties opens the way for the use of such profiles and proteins as bacterial biomarkers for the properties of bacteria but probably also for their potential health effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200800399DOI Listing

Publication Analysis

Top Keywords

lactobacillus plantarum
8
bacterial biomarkers
8
proteomic analysis
8
plantarum whe
8
cell wall
8
adhesive strain
8
profiles proteins
8
plantarum
6
adhesion
5
2-de analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!