Objective: HIV-1 can use various G protein-coupled receptors (GPCRs) in addition to CCR5 and CXCR4 as coreceptors; however, this type of HIV-1 infection has hardly been detected in vivo. The objective of this study was to elucidate the spectrum of GPCR usage by HIV-1 populations in vivo.
Design: CD4-expressing glioma cell line, NP-2/CD4, becomes highly susceptible to HIV-1 when the cells express GPCRs with coreceptor activities. This cell system was advantageous for detecting the inefficient use of GPCRs by HIV-1.
Methods: We developed NP-2/CD4/GPCR cells that express each of 23 GPCRs: 21 chemokine receptors (CCR1, CCR2b, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9B, CCR10, CCR11, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CX3CR1, XCR1, D6, and DARC) and two other GPCRs (a formylpeptide receptor, FPRL1, and an orphan GPCR, GPR1). NP-2/CD4/GPCR cells were directly cocultured with HIV-1-positive peripheral blood lymphocytes and HIV-1 infection was detected.
Results: Primary HIV-1 isolates were obtained from NP-2/CD4/GPCR cells expressing CCR5, CXCR4, FPRL1, or GPR1 cocultured with 11 of 17 peripheral blood lymphocytes. Surprisingly, these isolates showed extremely expanded GPCR usage, such as CCR1, CCR3, CCR5, CCR8, CXCR4, D6, FPRL1, and GPR1 as coreceptors. We found that CCR9B, CCR10, and XCR1 also work as novel HIV-1 coreceptors.
Conclusion: FPRL1 and GPR1 have the potential to work as significant HIV-1 coreceptors in vivo next to CCR5 and CXCR4. HIV-1 populations that can use various GPCRs as coreceptors are already circulating in vivo, even in the early stage of HIV-1 infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/QAD.0b013e328326cc0d | DOI Listing |
Curr Issues Mol Biol
November 2024
Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia.
Virus-like particles (VLPs) are an attractive vehicle for the delivery of Cas nuclease and guide RNA ribonucleoprotein complexes (RNPs). Most VLPs are produced by packaging SpCas9 and its sgRNA, which is expressed from the RNA polymerase III (Pol III)-transcribed U6 promoter. VLPs assemble in the cytoplasm, but U6-driven sgRNA is localized in the nucleus, which hinders the efficient formation and packaging of RNPs into VLPs.
View Article and Find Full Text PDFCurr HIV Res
January 2025
Clinical Laboratory, The People's Hospital of Baoding, Baoding, Hebei, 071000, China.
bioRxiv
October 2024
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
During human immunodeficiency virus (HIV-1) entry into host cells, binding to the receptors, CD4 and CCR5/CXCR4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer ((gp120-gp41)). CD4 binding induces Env to make transitions from its pretriggered conformation (PTC) to more "open" conformations that are sensitive to inhibition by antibodies, CD4-mimetic compounds (CD4mcs) and exposure to cold. Changes in functional membrane Envs have been identified that either stabilize or destabilize the PTC.
View Article and Find Full Text PDFFront Immunol
November 2024
Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea.
It has been demonstrated that CXCL12 inhibits hair growth via CXCR4, and its neutralizing antibody (Ab) increases hair growth in alopecia areata (AA). However, the molecular mechanisms have not been fully elucidated. In the present study, we further prepared humanized CXCL12 Ab for AA treatment and investigated underlying molecular mechanisms using single-cell RNA sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!