Background: Pollens from species of the Cupressaceae family are one of the most important causes of respiratory allergies worldwide. Many patients with pollinosis have specific IgE to both allergens from Japanese cedar and Japanese cypress pollen. We set out to identify T cell epitopes in Cha o 2, the second major allergen of Japanese cypress pollen.
Methods: T cell lines (TCL) and T cell clones (TCC) specific to Cha o 2 were generated from allergic patients cross-reactive to Japanese cedar and Japanese cypress pollen. T cell epitopes in Cha o 2 were identified by responses of TCL stimulated with overlapping peptides. Abilities of IL-4/IFN-gamma production by TCC were evaluated using enzyme immunoassay.
Results: Using TCL, 11 dominant and subdominant T cell epitopes were identified in Cha o 2. The subsets of TCC were predominantly of T helper 2-type. A T cell epitope p141-160 in Cha o 2 and corresponding peptide in Cry j 2 showed high homology. Although TCC PC.205.159 responded to stimulation with p141-160 in Cha o 2, it did not respond with corresponding peptide in Cry j 2, therefore, the T cell epitope was unique to Cha o 2.
Conclusions: Eleven T cell epitopes that were identified are unique to Cha o 2. Cha o 2 is a putative aeroallergen that can potentially sensitize human T cells. We concluded that generation of T cells specific to Cha o 2 in allergic patients acts as one of the causes of continuous allergic symptoms in April.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2332/allergolint.08-OA-0027 | DOI Listing |
JACS Au
December 2024
Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.
The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.
View Article and Find Full Text PDFVet Sci
December 2024
Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.
View Article and Find Full Text PDFVet Sci
December 2024
Laboratory of Veterinary Parasitology and Clinical Analysis, Academic Unit of Agricultural Sciences, Federal University of Jataí, Jataí 75801-615, Goiás, Brazil.
Canine monocytic ehrlichiosis (CME) is an infectious disease caused by , a globally recognized obligate intracellular bacterium. In addition to dogs, other animals, including humans, may be affected. Despite its epidemiological importance and impact on public health, there is currently no commercial vaccine against .
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
Animal and Human Health Program, International Livestock Research Institute, Nairobi P.O. Box 30709, Kenya.
Background: Immune correlates of protection are ideal tools to predict treatment or vaccine efficacy. However, the accuracy of the immune correlate and the capability to robustly predict the outcome of a vaccine candidate are determined by the performance of the in vitro immunoassay used. Several sporozoite seroneutralization assays have previously been used to assess antibody functional activities; however, a common limitation has been the need for fresh material, target cells and sporozoites, and operator-to-operator bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!