In skeletal muscle, oxygen (O(2)) delivery to appropriately meet metabolic need requires mechanisms for detection of the magnitude of O(2) demand and the regulation of O(2) delivery. Erythrocytes, when exposed to a decrease in O(2) tension, release both O(2) and the vasodilator adenosine triphosphate (ATP). The aims of this study were to establish that erythrocytes release ATP in response to reduced O(2) tension and determine if erythrocytes are necessary for the dilation of isolated skeletal muscle arterioles exposed to reduced extraluminal O(2) tension. Rabbit erythrocytes exposed to reduced O(2) tension in a tonometer (n = 5, pO(2) = 27 +/- 3, p < 0.01) released ATP in response to reduced O(2) tension. ATP release increased in proportion to the decrease in O(2) tension. The contribution of erythrocytes to the response of skeletal muscle arterioles to reduced extraluminal O(2) tension was determined using isolated hamster cheek pouch retractor muscle arterioles perfused with buffer (n = 11, mean diameter 52 +/- 3 mum) in the absence and presence of rabbit erythrocytes. Without erythrocytes, arterioles did not dilate when exposed to reduced extraluminal O(2) tension (pO(2) = 32 +/- 4 mmHg). In contrast, when rabbit erythrocytes were present in the perfusate (hematocrit 15%), the same decrease in O(2) tension resulted in a 20 +/- 4% dilation (p < 0.01). These results provide support for the hypothesis that erythrocytes, via their ability to release O(2) along with ATP in response to exposure to reduced O(2) tension, can participate in the matching of O(2) delivery with metabolic need in skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906251PMC
http://dx.doi.org/10.1016/s1734-1140(09)70020-9DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
rabbit erythrocytes
16
muscle arterioles
16
reduced tension
16
release atp
12
decrease tension
12
atp response
12
exposed reduced
12
reduced extraluminal
12
extraluminal tension
12

Similar Publications

Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Late Presentation of McArdle's Disease Mimicking Polymyalgia Rheumatica: A Case Report and Review of the Literature.

Case Rep Rheumatol

January 2025

Department of Rheumatology, Royal Wolverhampton NHS Trust, Wolverhampton, UK.

McArdle disease or glycogen storage disease Type V is a genetic condition caused by PYGM gene mutations leading to exercise intolerance and fatigability. The condition most commonly presents in childhood. In rare cases, patients have presented with late-onset McArdle disease.

View Article and Find Full Text PDF

Histological techniques to study muscle are crucial for assessing skeletal muscle health. To preserve tissue morphology, samples are usually fixed in formaldehyde or cryopreserved immediately after excision from the body. Freezing samples in liquid nitrogen, using isopentane as a mediator for efficient cooling, preserves the tissue in its natural state.

View Article and Find Full Text PDF

Clinical significance of cachexia index determined by bioelectrical impedance analysis in patients with gastrointestinal cancer.

Oncol Lett

March 2025

Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kansai 602-8566, Japan.

Cancer cachexia is a complex disorder characterized by skeletal muscle loss, which may influence the prognosis of patients with cancer. The cachexia index (CXI) is a new index for cachexia. The present study aimed to assess whether the CXI determined by bioelectrical impedance analysis (BIA) is valuable for predicting survival in patients with gastrointestinal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!