AI Article Synopsis

  • The insulin IGF-1-PI3K-Akt signaling pathway may enhance heart function by affecting calcium handling through Akt, but the specific mechanisms were unclear.
  • Akt has been found to regulate the density of L-type Ca(2+) channels (LTCC) by affecting the protein levels of Ca(v)alpha1, which is crucial for calcium flow in heart muscle cells.
  • The phosphorylation of Ca(v)beta2 by Akt prevents the degradation of Ca(v)alpha1, leading to higher LTCC density and potentially improving calcium entry and heart contraction.

Article Abstract

The insulin IGF-1-PI3K-Akt signaling pathway has been suggested to improve cardiac inotropism and increase Ca(2+) handling through the effects of the protein kinase Akt. However, the underlying molecular mechanisms remain largely unknown. In this study, we provide evidence for an unanticipated regulatory function of Akt controlling L-type Ca(2+) channel (LTCC) protein density. The pore-forming channel subunit Ca(v)alpha1 contains highly conserved PEST sequences (signals for rapid protein degradation), and in-frame deletion of these PEST sequences results in increased Ca(v)alpha1 protein levels. Our findings show that Akt-dependent phosphorylation of Ca(v)beta2, the LTCC chaperone for Ca(v)alpha1, antagonizes Ca(v)alpha1 protein degradation by preventing Ca(v)alpha1 PEST sequence recognition, leading to increased LTCC density and the consequent modulation of Ca(2+) channel function. This novel mechanism by which Akt modulates LTCC stability could profoundly influence cardiac myocyte Ca(2+) entry, Ca(2+) handling, and contractility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699149PMC
http://dx.doi.org/10.1083/jcb.200805063DOI Listing

Publication Analysis

Top Keywords

ca2+ channel
12
cavalpha1 protein
12
l-type ca2+
8
ca2+ handling
8
pest sequences
8
protein degradation
8
ca2+
6
cavalpha1
6
protein
6
akt
4

Similar Publications

Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Background: The roles of Aβ in the pathogenesis of Alzheimer 's disease (AD) include disruption of synaptic communication/function and synaptic plasticity mechanisms thought to underlie learning and memory. Exactly how these abnormal processes arise is incompletely understood, but evidence suggests that dysregulation of intracellular Ca levels is involved in alterations of neuronal excitability, synaptic remodeling, and neurodegeneration in AD. Our lab has focused on the potential involvement of voltage-gated potassium channels (VGKCs) in these processes, particularly Kv1.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive memory loss and cognitive decline. The precise molecular mechanisms underlying AD pathogenesis remain uncertain, underscoring the need for further investigation to identify novel therapeutic targets. We recently demonstrated that mitochondrial calcium (Ca) overload significantly contributes to the development of AD, capable of independently driving AD-like pathology.

View Article and Find Full Text PDF

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!