A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interpreting trial results in light of conflicting evidence: a Bayesian analysis of adjuvant chemotherapy for non-small-cell lung cancer. | LitMetric

Interpreting trial results in light of conflicting evidence: a Bayesian analysis of adjuvant chemotherapy for non-small-cell lung cancer.

J Clin Oncol

Department of Medicine, Division of Hematology and Oncology, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215, USA.

Published: May 2009

Purpose: When successive randomized trials contradict prior evidence, clinicians may be unsure how to evaluate them: Does accumulating evidence warrant changing practice? An increasingly popular solution, Bayesian statistics quantitatively evaluate new results in context. This study provides a clinically relevant example of Bayesian methods.

Methods: Three recent non-small-cell lung cancer adjuvant chemotherapy trials were evaluated in light of prior conflicting data. Results were used from International Adjuvant Lung Trial (IALT), JBR.10, and Adjuvant Navelbine International Trialist Association (ANITA). Prior evidence was sequentially updated to calculate the probability of each survival benefit level (overall and by stage) and variance. Sensitivity analysis was performed using expert opinion and uninformed estimates of survival benefit prior probability.

Results: The probability of a 4% survival benefit increased from 33% before IALT to 64% after IALT. After sequential updating with JBR.10 and ANITA, this probability was 82% (hazard ratio = 0.84; 95% CI, 0.77 to 0.91). IALT produced the largest decrease in variance (61%) and decreased the chance of survival decrement to 0%. Sensitivity analysis did not support a survival benefit after IALT. However, sequential updating substantiated a 4% survival benefit and, for stage II and III, more than 90% probability of a 6% benefit and 50% probability of a 12% benefit.

Conclusion: When evaluated in context with prior data, IALT did not support a 4% survival benefit. However, sequential updating with JBR.10 and ANITA did. A model for future assessments, this study demonstrates the unique ability of Bayesian analysis to evaluate results that contradict prior evidence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674005PMC
http://dx.doi.org/10.1200/JCO.2008.16.2586DOI Listing

Publication Analysis

Top Keywords

survival benefit
24
prior evidence
12
sequential updating
12
bayesian analysis
8
adjuvant chemotherapy
8
non-small-cell lung
8
lung cancer
8
contradict prior
8
probability survival
8
sensitivity analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!