A common interaction for the entry of colicin N and filamentous phage into Escherichia coli.

J Mol Biol

Center for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK.

Published: May 2009

Colicin N is a pore-forming bacteriocin that enters target Escherichia coli cells with the assistance of TolA, a protein in the periplasm of the target cell. The N-terminal domain of the colicin that carries the TolA-binding epitope, the translocation domain (T-domain), is intrinsically disordered. From (1)H-(13)C-(15)N NMR studies of isotopically labeled T-domain interacting with unlabeled TolAIII (the C-terminal domain of TolA), we have identified the TolA-binding epitope and have shown that the extent of its disorder is reduced on binding TolA, although it does not fold into a globular structure with defined secondary structure elements. Residues upstream and downstream of the 27-residue TolA-binding epitope remain disordered in the TolA-bound T-domain as they are in the free T-domain. Filamentous phage also exploits TolAIII to enter target cells, with TolAIII retaining its main secondary structure elements and global fold. In contrast to this, binding of the disordered T-domain of colicin A causes dramatic conformational changes in TolAIII marked by increased flexibility and lack of a rigid tertiary structure consistent with at least partial unfolding of TolAIII, suggesting that bacteriocins and bacteriophages parasitize E. coli using different modes of interaction with TolAIII. We have found that the colicin N T-domain-TolAIII interaction is strikingly similar to the previously described g3p-TolAIII interaction. The fact that both colicin N and filamentous phage exploit TolAIII in a similar manner, with one being a bacterial intrinsically disordered protein and the other being a viral structurally well-ordered protein, suggests that these represent a good example of convergent evolution at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2009.03.035DOI Listing

Publication Analysis

Top Keywords

filamentous phage
12
tola-binding epitope
12
colicin filamentous
8
escherichia coli
8
intrinsically disordered
8
secondary structure
8
structure elements
8
tolaiii
7
colicin
6
t-domain
5

Similar Publications

Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.

View Article and Find Full Text PDF

Combined 3D cell culture in vitro assays with microenvironment-mimicking systems are effective for cell-based screening tests of drug and chemical toxicity. Filamentous bacteriophages have diverse applications in material science, drug delivery, tissue engineering, energy, and biosensor development. Specifically, genetically modified bacteriophages have the potential to deliver therapeutic molecules or genes to targeted tumor tissues.

View Article and Find Full Text PDF

Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new phage PA1.

Front Microbiol

October 2024

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.

Introduction: has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance.

Methods: This study isolated and characterized the phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1.

View Article and Find Full Text PDF

Thiophene-based nanoparticles (TNPs) are promising therapeutic and imaging agents. Here, using an innovative phage-templated synthesis, a strategy able to bypass the current limitations of TNPs in nanomedicine applications is proposed. The phage capsid is decorated with oligothiophene derivatives, transforming the virus in a 1D-thiophene nanoparticle (1D-TNP).

View Article and Find Full Text PDF

The packaging signal of Xanthomonas integrative filamentous phages.

Virology

December 2024

Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy.

Unlike Ff, the packaging signal (PS) and the mechanism of integrative filamentous phage assembly remains largely unknown. Here we revived two Inoviridae prophage sequences, ϕLf2 and ϕLf-UK, as infectious virions that lysogenize black rot pathogen Xanthomonas campestris pv. campestris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!