Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins.

FEBS Lett

Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, BCM335, RM T419, Houston, TX 77030, USA.

Published: April 2009

Cell migration requires the controlled disassembly of focal adhesions, but the underlying mechanisms remain poorly understood. Here, we show that adhesion turnover is mediated through dynamin- and clathrin-dependent endocytosis of activated beta1 integrins. Consistent with this, clathrin and the clathrin adaptors AP-2 and disabled-2 (DAB2) distribute along with dynamin 2 to adhesion sites prior to adhesion disassembly. Moreover, knockdown of either dynamin 2 or both clathrin adaptors blocks beta1 integrin internalization, leading to impaired focal adhesion disassembly and cell migration. Together, these results provide important insight into the mechanisms underlying adhesion disassembly and identify novel components of the disassembly pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801759PMC
http://dx.doi.org/10.1016/j.febslet.2009.03.037DOI Listing

Publication Analysis

Top Keywords

adhesion disassembly
16
focal adhesion
8
clathrin-dependent endocytosis
8
cell migration
8
clathrin adaptors
8
disassembly
6
adhesion
5
disassembly requires
4
requires clathrin-dependent
4
endocytosis integrins
4

Similar Publications

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

Harnessing Imine Chemistry for the Debonding-on-Demand of Polyurethane Adhesives.

ACS Appl Mater Interfaces

December 2024

Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Traditional adhesives often result in irreversible bonds, hindering disassembly and recycling processes. In response to the growing demand for sustainable practices, researchers have explored alternative bonding solutions. Debonding-on-demand adhesives represent a breakthrough, enabling selective weakening or breaking of adhesive bonds when desired and facilitating efficient disassembly, repair, and recycling of bonded materials.

View Article and Find Full Text PDF

Unlabelled: The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane.

View Article and Find Full Text PDF

Mayaro virus (MAYV) is an emerging mosquito-borne viral pathogen whose infection results in arthritogenic disease. Despite ongoing research efforts, MAYV biology is largely unknown. Physical virology can assess MAYV nanoparticle metastability, assembly/disassembly, and polymorphism, allowing us to understand virion architecture and dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!