Lecithin: cholesterol acyltransferase--from biochemistry to role in cardiovascular disease.

Curr Opin Endocrinol Diabetes Obes

National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD 20814, USA.

Published: April 2009

Purpose Of Review: We discuss the latest findings on the biochemistry of lecithin : cholesterol acyltransferase (LCAT), the effect of LCAT on atherosclerosis, clinical features of LCAT deficiency, and the impact of LCAT on cardiovascular disease from human studies.

Recent Findings: Although there has been much recent progress in the biochemistry of LCAT and its effect on high-density lipoprotein metabolism, its role in the pathogenesis of atherosclerosis is still not fully understood. Studies from various animal models have revealed a complex interaction between LCAT and atherosclerosis that may be modified by diet and by other proteins that modify lipoproteins. Furthermore, the ability of LCAT to lower apoB appears to be the best way to predict its effect on atherosclerosis in animal models. Recent studies on patients with LCAT deficiency have shown a modest but significant increase in incidence of cardiovascular disease consistent with a beneficial effect of LCAT on atherosclerosis. The role of LCAT in the general population, however, has not revealed a consistent association with cardiovascular disease.

Summary: Recent research findings from animal and human studies have revealed a potential beneficial role of LCAT in reducing atherosclerosis but additional studies are necessary to better establish the linkage between LCAT and cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910390PMC
http://dx.doi.org/10.1097/med.0b013e328329233bDOI Listing

Publication Analysis

Top Keywords

cardiovascular disease
16
lcat
12
lcat atherosclerosis
12
lecithin cholesterol
8
lcat deficiency
8
lcat cardiovascular
8
animal models
8
role lcat
8
atherosclerosis
6
cardiovascular
5

Similar Publications

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.

Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.

View Article and Find Full Text PDF

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.

Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.

View Article and Find Full Text PDF

Importance: Cardiovascular health outcomes associated with noncigarette tobacco products (cigar, pipe, and smokeless tobacco) remain unclear, yet such data are required for evidence-based regulation.

Objective: To investigate the association of noncigarette tobacco products with cardiovascular health outcomes.

Design, Setting, And Participants: This cohort study was conducted within the Cross Cohort Collaboration Tobacco Working Group by harmonizing tobacco-related data and conducting a pooled analysis from 15 US-based prospective cohorts with data on the use of at least 1 noncigarette tobacco product ranging between 1948 and 2015.

View Article and Find Full Text PDF

CRISPR-Cas9 Targeting PCSK9: A Promising Therapeutic Approach for Atherosclerosis.

J Cardiovasc Transl Res

January 2025

Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China.

CRISPR-Cas9 gene editing technology, as an innovative biomedical tool, holds significant potential in the prevention and treatment of atherosclerosis. By precisely editing key genes such as PCSK9, CRISPR-Cas9 offers the possibility of long-term regulation of low-density lipoprotein cholesterol (LDL-C), which may reduce the risk of cardiovascular diseases. Early clinical studies of gene editing therapies like VERVE-101 have yielded encouraging results, highlighting both the feasibility and potential efficacy of this technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!