Purpose Of Review: We discuss the latest findings on the biochemistry of lecithin : cholesterol acyltransferase (LCAT), the effect of LCAT on atherosclerosis, clinical features of LCAT deficiency, and the impact of LCAT on cardiovascular disease from human studies.
Recent Findings: Although there has been much recent progress in the biochemistry of LCAT and its effect on high-density lipoprotein metabolism, its role in the pathogenesis of atherosclerosis is still not fully understood. Studies from various animal models have revealed a complex interaction between LCAT and atherosclerosis that may be modified by diet and by other proteins that modify lipoproteins. Furthermore, the ability of LCAT to lower apoB appears to be the best way to predict its effect on atherosclerosis in animal models. Recent studies on patients with LCAT deficiency have shown a modest but significant increase in incidence of cardiovascular disease consistent with a beneficial effect of LCAT on atherosclerosis. The role of LCAT in the general population, however, has not revealed a consistent association with cardiovascular disease.
Summary: Recent research findings from animal and human studies have revealed a potential beneficial role of LCAT in reducing atherosclerosis but additional studies are necessary to better establish the linkage between LCAT and cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910390 | PMC |
http://dx.doi.org/10.1097/med.0b013e328329233b | DOI Listing |
Blood Cancer Discov
January 2025
Princess Máxima Center, Utrecht, Netherlands.
In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.
Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.
JAMA Pediatr
January 2025
Department of Cardiology, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.
Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.
Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.
Importance: Cardiovascular health outcomes associated with noncigarette tobacco products (cigar, pipe, and smokeless tobacco) remain unclear, yet such data are required for evidence-based regulation.
Objective: To investigate the association of noncigarette tobacco products with cardiovascular health outcomes.
Design, Setting, And Participants: This cohort study was conducted within the Cross Cohort Collaboration Tobacco Working Group by harmonizing tobacco-related data and conducting a pooled analysis from 15 US-based prospective cohorts with data on the use of at least 1 noncigarette tobacco product ranging between 1948 and 2015.
J Cardiovasc Transl Res
January 2025
Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China.
CRISPR-Cas9 gene editing technology, as an innovative biomedical tool, holds significant potential in the prevention and treatment of atherosclerosis. By precisely editing key genes such as PCSK9, CRISPR-Cas9 offers the possibility of long-term regulation of low-density lipoprotein cholesterol (LDL-C), which may reduce the risk of cardiovascular diseases. Early clinical studies of gene editing therapies like VERVE-101 have yielded encouraging results, highlighting both the feasibility and potential efficacy of this technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!