Cell-matrix interactions are of significant importance for tissue homeostasis of the skin and, if disturbed, may lead to ageing and hyperplastic scar formation. We have studied fibroblasts stably overexpressing manganese superoxide dismutase (MnSOD) with a defined capacity for the removal of superoxide anions and concomitant accumulation of hydrogen peroxide to evaluate the role of enhanced MnSOD activity on the dynamics of cell-matrix interactions in the three-dimensional collagen lattice contraction assay. MnSOD overexpressing fibroblast populated collagen lattices revealed a significantly enhanced contraction compared to collagen lattices populated with vector control cells. The enhanced collagen lattice contraction was in part due to an increase in active TGF-beta1 and the accumulation of H2O2 in MnSOD overexpressing fibroblasts populated collagen lattices. Inhibition of TGF-beta1 signalling by the ALK4,5,7 kinases' inhibitor SB431542 at least partly inhibited the enhanced collagen lattice contraction of MnSOD overexpressing fibroblasts populated lattices. In addition, supplementation of vector control fibroblast populated collagen lattices with recombinant TGF-beta1 concentration dependently enhanced the collagen lattice contraction. In the presence of the antioxidant Ebselen, a mimic of H2O2 and other hydroperoxides/peroxynitrite-detoxifying glutathione peroxidase, collagen lattice contraction and the activation of TGF-beta1 were significantly reduced in collagen lattices populated with MnSOD overexpressing fibroblasts. Collectively, these data suggest that H2O2 or other hydroperoxides or peroxynitrite or a combination thereof may function as important second messengers in collagen lattice contraction and act at least in part via TGF-beta1 activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00403-009-0935-9 | DOI Listing |
Eye (Lond)
January 2025
Bio-manufacturing Engineering Laboratory, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China.
Objectives: To propose and evaluate a novel, non-invasive approach for enduring corneal astigmatism correction based on topography-guided, patterned, customized riboflavin-ultraviolet A corneal collagen crosslinking (CXL).
Methods: Astigmatism was modelled on both eyes of rabbits. A randomly selected eye of each rabbit was treated by the proposed CXL procedure with another eye as control.
J Anat
January 2025
Bonn Institute of Organismal Biology, Paleontology, University of Bonn, Bonn, Germany.
Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.
View Article and Find Full Text PDFSoft Matter
November 2024
Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA.
Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China.
Introduction: The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.
View Article and Find Full Text PDFGels
October 2024
Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!