QT interval duration, reflecting myocardial repolarization on the electrocardiogram, is a heritable risk factor for sudden cardiac death and drug-induced arrhythmias. We conducted a meta-analysis of three genome-wide association studies in 13,685 individuals of European ancestry from the Framingham Heart Study, the Rotterdam Study and the Cardiovascular Health Study, as part of the QTGEN consortium. We observed associations at P < 5 x 10(-8) with variants in NOS1AP, KCNQ1, KCNE1, KCNH2 and SCN5A, known to be involved in myocardial repolarization and mendelian long-QT syndromes. Associations were found at five newly identified loci, including 16q21 near NDRG4 and GINS3, 6q22 near PLN, 1p36 near RNF207, 16p13 near LITAF and 17q12 near LIG3 and RFFL. Collectively, the 14 independent variants at these 10 loci explain 5.4-6.5% of the variation in QT interval. These results, together with an accompanying paper, offer insights into myocardial repolarization and suggest candidate genes that could predispose to sudden cardiac death and drug-induced arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701449PMC
http://dx.doi.org/10.1038/ng.364DOI Listing

Publication Analysis

Top Keywords

myocardial repolarization
12
interval duration
8
sudden cardiac
8
cardiac death
8
death drug-induced
8
drug-induced arrhythmias
8
common variants
4
variants ten
4
ten loci
4
loci influence
4

Similar Publications

Kounis Syndrome Following Moxifloxacin and Deflazacort Administration.

Eur J Case Rep Intern Med

December 2024

Emergency Department, Ente Ospedaliero Cantonale - Ospedale Regionale di Lugano, Lugano, Switzerland.

Unlabelled: Kounis syndrome (KS), characterized by the simultaneous occurrence of acute coronary syndrome (ACS) and allergic reactions, can be triggered by a range of factors and drugs. We report on the case of a patient who arrived at our emergency department (ED) with symptoms of an allergic reaction after taking moxifloxacin and deflazacort orally. In the ED, the patient experienced a 5-minute episode of oppressive chest pain.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).

View Article and Find Full Text PDF

Background: Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity.

Methods And Results: Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031.

View Article and Find Full Text PDF

Resveratrol alleviates heart failure by activating foxo3a to counteract oxidative stress and apoptosis.

Biomed Pharmacother

December 2024

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Resveratrol has been extensively studied for its multifaceted health benefits. Nonetheless, the pharmacological mechanisms of resveratrol for heart failure remain elusive, especially the cardioprotective effects. To address this knowledge gap, we performed high-throughput drug screening using zebrafish and discovered that resveratrol significantly alleviated heart failure, including rescuing abnormalities in heart rate, blood flow, cardiac output, and nppb overexpression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!