The biosynthetic pathway for myxol-2' fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002.

J Bacteriol

Department of Biochemistry and Molecular Biology, S-235 Frear Building, The Pennsylvania State University, University Park, PA 16802, USA.

Published: May 2009

Synechococcus sp. strain PCC 7002 produces a variety of carotenoids, which comprise predominantly dicylic beta-carotene and two dicyclic xanthophylls, zeaxanthin and synechoxanthin. However, this cyanobacterium also produces a monocyclic myxoxanthophyll, which was identified as myxol-2' fucoside. Compared to the carotenoid glycosides produced by diverse microorganisms, cyanobacterial myxoxanthophyll and closely related compounds are unusual because they are glycosylated on the 2'-OH rather than on the 1'-OH position of the psi end of the molecule. In this study, the genes encoding two enzymes that modify the psi end of myxoxanthophyll in Synechococcus sp. strain PCC 7002 were identified. Mutational and biochemical studies showed that open reading frame SynPCC7002_A2032, renamed cruF, encodes a 1',2'-hydroxylase [corrected] and that open reading frame SynPCC7002_A2031, renamed cruG, encodes a 2'-O-glycosyltransferase. The enzymatic activity of CruF was verified by chemical characterization of the carotenoid products synthesized when cruF was expressed in a lycopene-producing strain of Escherichia coli. Database searches showed that homologs of cruF and cruG occur in the genomes of all sequenced cyanobacterial strains that are known to produce myxol or the acylic xanthophyll oscillaxanthin. The genomes of many other bacteria that produce hydroxylated carotenoids but do not contain crtC homologs also contain cruF orthologs. Based upon observable intermediates, a complete biosynthetic pathway for myxoxanthophyll is proposed. This study expands the suite of enzymes available for metabolic engineering of carotenoid biosynthetic pathways for biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687168PMC
http://dx.doi.org/10.1128/JB.00050-09DOI Listing

Publication Analysis

Top Keywords

synechococcus strain
12
strain pcc
12
pcc 7002
12
biosynthetic pathway
8
myxol-2' fucoside
8
open reading
8
reading frame
8
homologs cruf
8
myxoxanthophyll
5
cruf
5

Similar Publications

Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002.

Metab Eng

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA.

View Article and Find Full Text PDF

The ability to precisely engineer cyanobacterial metabolism first requires the ability to efficiently deliver engineered DNA constructs. Here, we investigate how natural transformation efficiencies in Synechococcus sp. PCC 7002 can be greatly improved by leveraging the native and abundant cyanobacterial Highly Iterated Palindrome 1 (HIP1) sequence.

View Article and Find Full Text PDF

To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp.

View Article and Find Full Text PDF

One-for-all gene inactivation via PAM-independent base editing in bacteria.

J Biol Chem

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao, China. Electronic address:

Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria.

View Article and Find Full Text PDF

Quantification of cyanobacterial CO fixation rates is vital to determining their potential as industrial strains in a circular bioeconomy. Currently, however, CO fixation rates are most often determined through indirect and/or low-resolution methods, resulting in an incomplete picture of both dynamic behaviors and total carbon fixation potential. To address this, we developed the "Automated Carbon and CO Experimental Sampling System" (ACCESS); a low-cost system for in situ off-gas analysis that supports the automated acquisition of high-resolution volumetric CO uptake rates from multiple cyanobacterial cultures in parallel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!