Trace ratio problem revisited.

IEEE Trans Neural Netw

Department of Automation, State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology Tsinghua University, Beijing, China.

Published: April 2009

Dimensionality reduction is an important issue in many machine learning and pattern recognition applications, and the trace ratio (TR) problem is an optimization problem involved in many dimensionality reduction algorithms. Conventionally, the solution is approximated via generalized eigenvalue decomposition due to the difficulty of the original problem. However, prior works have indicated that it is more reasonable to solve it directly than via the conventional way. In this brief, we propose a theoretical overview of the global optimum solution to the TR problem via the equivalent trace difference problem. Eigenvalue perturbation theory is introduced to derive an efficient algorithm based on the Newton-Raphson method. Theoretical issues on the convergence and efficiency of our algorithm compared with prior literature are proposed, and are further supported by extensive empirical results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2009.2015760DOI Listing

Publication Analysis

Top Keywords

trace ratio
8
ratio problem
8
dimensionality reduction
8
problem
6
problem revisited
4
revisited dimensionality
4
reduction issue
4
issue machine
4
machine learning
4
learning pattern
4

Similar Publications

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Target-induced proximity ligation triggers polymerase chain reaction for subset tracing of small extracellular vesicles.

Talanta

January 2025

Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China. Electronic address:

The considerable abundance and remarkable stability of sEVs provide substantial benefits for diagnosing Alzheimer's disease. Therefore, precise tracking subtypes of small extracellular vesicles (sEVs) is crucial for screening novel diagnostic biomarkers and developing therapeutic technologies. We propose a three-target recognition-mediated proximity ligation assay for the precise identification of sEV subtypes utilizing three specifically designed probes: one for the exosomal surface protein CD63 recognition, one for fixing the biolipid layer, and the third for the identification of distinctive protein associated with a specific subtype of sEVs (L1CAM positive sEVs).

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO-HF with a ratio of 2:1, rock powder samples of 50 mg were completely decomposed in 12 h at 140 °C after 4 h of ultrasonic treatment with or without pressure relief procedure.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!