Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes.
Patients And Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV(sim) that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV(sim).
Results: The irradiated volume (volume receiving > or =95% of the prescribed dose [V(95)]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV(sim): 228 cm(3) vs. 147 cm(3) (p < .001). For the 17 patients with a PTV with anisotropic CTV margins, the V(95) was similar to the V(95) for the PTV(sim) (190 cm(3) vs. 162 cm(3); p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029).
Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2008.11.048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!