Differential expression of alpha-l-arabinofuranosidase and alpha-l-arabinofuranosidase/beta-d-xylosidase genes during peach growth and ripening.

Plant Physiol Biochem

Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina.

Published: July 2009

Arabinose is the major neutral sugar in peach (Prunus persica (L.) Batsch) cell walls and substantial changes in arabinose content take place not only during peach melting, when a rapid-softening-related depolymerizing activity may be expected, but also at the onset of peach ripening. A full-length cDNA clone sequence referred to as PpARF1 (GenBank accession no. DQ486870) was obtained and determined by bioinformatics' analysis to be a peach alpha-l-arabinofuranosidase homologue. The deduced PpARF1 translation product is 677 amino acids in length while the mature protein has a predicted molecular mass of 71.6 kD and a theoretical pI of 4.94. Semi-quantitative RT-PCR reactions were conducted to evaluate the expression of both PpARF1 and PpARF/XYL (GenBank accession no. AB264280), the latter encoding a putative bifunctional protein displaying both alpha-l-arabinofuranosidase and beta-d-xylosidase activities. In peach fruit, the PpARF1 gene expression was detected at every developmental stage with a maximum during S2 (lag phase of development) and a subsequent decrease towards S4 (maximal fruit size). In contrast, PpARF/XYL transcript levels were relatively high at the end of S1 (fruit set) and at S3-E (beginning of the cell expansion). Substantial increases in PpARF1 mRNA levels were found at the beginning and end of the climacteric rise and also in melting fruit. In contrast, PpARF/XYL transcripts reached a maximum when fruit firmness was 22-26 N, with a slight decline during the melting stage. PpARF/XYL and PpARF1 were expressed differently in three fruit tissue types as well as in other plant tissues. Ethylene is regarded as the main regulator of peach ripening and the accumulation of PpARF/XYL and PpARF1 transcripts is coincident with the autocatalytic ethylene production during ripening. On the hand, other factors may also play a role in PpARF1 and PpARF/XYL expression, since transcripts accumulate at different developmental times and organs even when ethylene biosynthesis is barely detectable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2009.02.007DOI Listing

Publication Analysis

Top Keywords

peach ripening
8
pparf1
8
genbank accession
8
pparf1 pparf/xyl
8
contrast pparf/xyl
8
pparf/xyl pparf1
8
peach
7
pparf/xyl
6
fruit
6
differential expression
4

Similar Publications

The basic helix-loop-helix transcription factor PpeUNE12 regulates peach ripening by promoting polyamine catabolism and anthocyanin synthesis.

Plant Physiol Biochem

January 2025

College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:

The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.

View Article and Find Full Text PDF

is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host-pathogen interaction is essential to manage fungal plant diseases. putative virulence factors have been predicted by genome investigations.

View Article and Find Full Text PDF

Multidimensional analysis of the flavor characteristics of yellow peach at different ripening stages: Chemical composition profiling and sensory evaluation.

Food Chem

January 2025

SAAS Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:

The flavor evolution of yellow peaches during ripening was investigated using a gas chromatography-mass spectrometer (GC-MS), metabolomics, and electronic sensoristic techniques. Of the 41 volatiles quantified, 13 increased the intensity of the aroma based on the odor activity values (OAVs). Additionally, 142 non-volatile compounds were identified.

View Article and Find Full Text PDF

Low temperature is the main strategy to preserve fruit quality post-harvest, in the supply chain. Low temperatures reduce the respiration, ethylene emission, and enzymatic activities associated with senescence. Unfortunately, peaches are sensitive to low temperatures if exposed for long periods, resulting in physiological disorders that can compromise commercial quality.

View Article and Find Full Text PDF

Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!