Fractionation of proteins and carbohydrates of extracellular polymeric substances in a membrane bioreactor system.

Bioresour Technol

Sanitary Engineering Laboratory, School of Civil Engineering, National Technical University of Athens, Zographou Campus, Athens, Greece.

Published: July 2009

The major operational problem associated with membrane bioreactors (MBR) is membrane fouling, for which extracellular polymeric substances (EPS) are primarily responsible. In this work both the soluble and bound EPS (i.e. SMP and EPS) produced in an MBR system operating under sludge retention times (SRT) of 10, 15, 20 and 33 days were fractionized by means of membranes having variable molecular weight cutoffs (300 kDa, 100 kDa, 10 kDa & 1 kDa). The results show that increasing the SRT leads to a reduction of SMP and EPS and that these reductions are more pronounced for the SRTs in the range 10-20 days. This reduction is more significant for carbohydrates than for proteins. The decrease of SMP and EPS with increasing SRT from 10 to 20 days led to a significant decrease of the level of fouling. The further increase of SRT to 33 days did not significantly impact on the level of fouling as the SMP and EPS concentrations did not change much. Under the examined operating conditions, EPS were found to be composed mainly of large macromolecules having a size of 0.45 microm-300 kDa and to a lower extent of very small molecules (<1 kDa) that are not easily decomposed by the biomass activity. The majority of SMP is composed of very small molecules (<1 kDa), while some macromolecules in the range of 0.45 microm-300 kDa are present. Consequently, both EPS and SMP were found to have a bimodal character.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.01.053DOI Listing

Publication Analysis

Top Keywords

smp eps
16
srt days
12
extracellular polymeric
8
polymeric substances
8
kda kda
8
increasing srt
8
level fouling
8
eps
7
kda
5
fractionation proteins
4

Similar Publications

Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.

View Article and Find Full Text PDF

Within this research, a one-stage hybrid dual internal circulation airlift A2O (DCAL-A2O) bioreactor was designed and operated to simultaneously remove carbon, nitrogen and phosphorous (CNP) from milk processing wastewater (MPW) in different operational circumstances. The substantial operating variables monitored in this work were including hydraulic retention time (HRT), airflow rate (AFR) and aeration volume ratio (AVR) ranged from 7 to 15 h, 1-3 L/min and 0.324-0.

View Article and Find Full Text PDF

Effect of substrate concentration on sulfamethoxazole wastewater treatment by osmotic microbial fuel cell: Insight into operational efficiency, dynamic changes of membrane fouling and microbial response.

Bioresour Technol

February 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.

To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was one of the key factors affecting the performances of OsMFC, but there were few relevant studies This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.

View Article and Find Full Text PDF

This study evaluated the effects of electrocoagulation integrated in a laboratory-scale membrane bioreactor (MBR), namely EC-MBR, on the treatment performance, activated sludge morphological characterization, and membrane fouling of MBR treating actual sunflower oil refinery wastewater. The EC-MBR system exhibited significantly higher chemical oxygen demand (COD) and oil and grease (O&G) removal efficiency compared to the MBR system. Additionally, both systems achieved excellent turbidity removal, with a percentage above 99%.

View Article and Find Full Text PDF

The aim of the study was to efficiently treat organic kitchen waste (FW) and domestic wastewater (DWW) together in an anaerobic fluidized bed bioreactor equipped with a ceramic membrane (AnFCMBR) through a sustainable approach considering energy recovery. The system operated continuously for 519 days at room temperature, and different filtration fluxes (1.7 and 5 L/m/h), hydraulic retention times (HRTs) (22 h and 7 h), and organic loading rate (OLRs) (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!