1. The co-existence of competitors in heterogeneous landscapes depends on the processes of colonization, extinction and spatial scale. In this study, we explore the metapopulation dynamics of competitive interactions. 2. Rather than simply evaluating the outcome of interspecific competition in the traditional manner, we focus on both the local population dynamic effects and the regional metapopulation processes affecting species co-existence. 3. We develop a theoretical model of regional co-existence to generate a set of predictions on the patterns of colonization necessary for co-existence and the regional processes that can lead to competitive exclusion. We empirically test these predictions using metacommunity microcosms of the interaction between two bruchid beetles (Callosobruchus chinensis, Callosobruchus maculatus). 4. Using well-replicated time series of the interaction between the bruchids and statistical methods of model fitting, we show how the qualitative and quantitative pattern of interspecific competition between the bruchid beetles is shaped by the structure of the metacommunity. 5. In unlimited dispersal metacommunities, the global exclusion of the inferior competitor is shown to be influenced more by the processes associated with extinction rather than low colonization ability. In restricted dispersal metacommunities, we show how the co-existence of competitors in a spatially heterogeneous habitat (patches connected through limited dispersal) is affected by Allee effects and life-history [colonization (dispersal) - competition] trade-offs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2009.01532.x | DOI Listing |
Ecol Lett
January 2025
UMR CNRS 7058 « Ecologie et Dynamique Des Systèmes Anthropisés » (EDYSAN), Université de Picardie Jules Verne, Amiens Cedex, France.
Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate.
View Article and Find Full Text PDFEcology
January 2025
Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA.
The subject of investigating causation in ecology has been widely discussed in recent years, especially by advocates of a structural causal model (SCM) approach. Some of these advocates have criticized the use of predictive models and model selection for drawing inferences about causation. We argue that the comparison of model-based predictions with observations is a key step in hypothetico-deductive (H-D) science and remains a valid approach for assessing causation.
View Article and Find Full Text PDFAnn Bot
January 2025
Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.
Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.
View Article and Find Full Text PDFEcology
January 2025
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.
Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (Ailuropoda melanoleuca) using occurrence data collected by harnessing the labor of >1000 workers and >60,000 worker days for each of the three periods (TP1: 1985-1988, TP2: 1998-2002, and TP3: 2011-2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e.
View Article and Find Full Text PDFPLoS Pathog
January 2025
REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!